CANDIDATE # UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education mmn. XiremeBabers.com | * | | |----------|--| | ∞ | | | _ | | | 4 | | | _ | | | И | | | 6 | | | 2 | | | 6 | | | 5 | | | 6 | | | | | | NAME | | | |------------------|--------|-----------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | CHEMISTRY | | 0620/33 | | Paper 3 (Exte | ended) | October/November 2012 | | | | 1 hour 15 minutes | _____ No Additional Materials are required. Candidates answer on the Question Paper. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 16. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | Total | | This document consists of 14 printed pages and 2 blank pages. ## **BLANK PAGE** | 1 | For each of the following, select an element from Period 4, potassium to krypton, which | | | |--------------------------|---|---|--| | matches the description. | | | | | | (a) | A metal that reacts rapidly with cold water to form a compound of the type $\mathrm{M}(\mathrm{OH})_2$ and hydrogen. | | | | | [1] | | | | (b) | Its only oxidation state is 0[1] | | | | (c) | It has a macromolecular oxide, $\mathrm{XO}_{\mathrm{2}},$ which has similar physical properties to those of diamond. | | | | | [1] | | | | (d) | This is one of the metals alloyed with iron in stainless steel [1] | | | | (e) | It can be reduced to an ion of the type X ⁻ . [1] | | | | (f) | It can form a covalent hydride having the formula H ₂ X | | | | (g) | Its soluble salts are blue and its oxide is black [1] | | | | (h) | It is a liquid at room temperature. [1] | | | | | [Total: 8] | | | 2 | (a) | State a use for each of the following gases. | | | | | (i) chlorine[1] | | | | | (ii) argon[1] | | | | (| (iii) ethene[1] | | | | (| (iv) oxygen[1] | | | | | | | (b) Describe how oxygen is obtained from air. [Total: 6] 3 (a) A small amount of liquid bromine is added to a container which is then sealed. $$Br_2(I) \rightarrow Br_2(g)$$ Use the ideas of the Kinetic Theory to explain why, after about an hour, the bromine molecules have spread uniformly to occupy the whole container. _____[((b) The diagrams below show simple experiments on the speed of diffusion of gases. © UCLES 2012 0620/33/O/N/12 Complete the following explanations. Diagram 1 has been done for you. #### Diagram 1 There is air inside and outside the porous pot so the rate of diffusion of air into the pot is the same as the rate of diffusion of air out of the pot. The pressure inside and outside the pot is the same so the coloured liquid is at the same level on each side of the tube. | Diagram 2 | | |-----------|------------| | | | | | | | | | | | [3] | | Diagram 3 | | | | | | | | | | | | | [3] | | | [Total: 9] | | (ii) Making alloys is still a major use of zinc. State one other large scale use of zinc. [(iii) Describe the bonding in a typical metal, such as zinc, and then explain why it malleable. You may use a diagram to illustrate your answer. [(iv) Suggest why the introduction of a different atom into the structure makes the alloless malleable than the pure metal. [b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blendown zinc. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. [(ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulflate. Write a balanced symbol equation for this reaction. | Zinc allo | bys have been used for over 2500 years. | |--|-----------|---| | (iii) Making alloys is still a major use of zinc. State one other large scale use of zinc. [iiii) Describe the bonding in a typical metal, such as zinc, and then explain why it malleable. You may use a diagram to illustrate your answer. [iv) Suggest why the introduction of a different atom into the structure makes the allot less malleable than the pure metal. [iv) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blend ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. [iii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulflat Write a balanced symbol equation for this reaction. | (a) (i) | Explain the phrase zinc alloy. | | (iii) Describe the bonding in a typical metal, such as zinc, and then explain why it malleable. You may use a diagram to illustrate your answer. (iv) Suggest why the introduction of a different atom into the structure makes the allowable less malleable than the pure metal. (b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blendown ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. (ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | | | | (iii) Describe the bonding in a typical metal, such as zinc, and then explain why it malleable. You may use a diagram to illustrate your answer. (iv) Suggest why the introduction of a different atom into the structure makes the alloless malleable than the pure metal. (b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blende ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. (ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfat Write a balanced symbol equation for this reaction. | (ii) | | | (iv) Suggest why the introduction of a different atom into the structure makes the alloless malleable than the pure metal. (b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blendor ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. [iii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate. Write a balanced symbol equation for this reaction. | (iii) | Describe the bonding in a typical metal, such as zinc, and then explain why it is | | (iv) Suggest why the introduction of a different atom into the structure makes the alloless malleable than the pure metal. (b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blendown ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. [iii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate. Write a balanced symbol equation for this reaction. | | | | (iv) Suggest why the introduction of a different atom into the structure makes the alloless malleable than the pure metal. (b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blende ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. [ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate. Write a balanced symbol equation for this reaction. | | | | (iv) Suggest why the introduction of a different atom into the structure makes the alloless malleable than the pure metal. [iv) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blended. ZnS. Zinc blended contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. [iii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate. Write a balanced symbol equation for this reaction. | | | | b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blende ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. (ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | (iv) | Suggest why the introduction of a different atom into the structure makes the allog | | ZnS. Zinc blende contains silver and lead compounds as well as zinc sulfide. Zinc blende is converted into impure zinc oxide by heating it in air. 2ZnS + 3O₂ → 2ZnO + 2SO₂ (i) Describe how zinc oxide is reduced to zinc. (ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | | [2 | | (i) Describe how zinc oxide is reduced to zinc. [(ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | ZnS | 6. Zinc blende contains silver and lead compounds as well as zinc sulfide. | | (ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | | $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ | | (ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | (i) | | | [; | (ii) | Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate Write a balanced symbol equation for this reaction. | | | | [2] | | (iii) | This impure solution of zinc sulfate contains zinc ions, silver(I) ions and lead ions. Explain why the addition of zinc powder produces pure zinc sulfate solution. Include at least one ionic equation in your explanation. | |-------|--| | | | | | | | | | | | | | | [4] | | (iv) | Describe how zinc metal can be obtained from zinc sulfate solution by electrolysis. A labelled diagram is acceptable. Include all the products of this electrolysis. The | electrolysis is similar to that of copper(II) sulfate solution with inert electrodes. [4] [Total: 18] For Examiner's Use **5** Propenoic acid is an unsaturated carboxylic acid. The structural formula of propenoic acid is given below. | (a) | (i) | Describe how you could show that propenoic acid is an unsaturated compound. | |-----|-------|---| | | | test | | | | result | | | | [2] | | | (ii) | Without using an indicator, describe how you could show that a compound is an acid. | | | | test | | | | result | | | | [2] | | (b) | its s | penoic acid reacts with ethanol to form an ester. Deduce the name of this ester. Draw structural formula. ne of ester | | | | [3] | | (c) | | organic compound has a molecular formula $\rm C_6H_8O_4$. It is an unsaturated carboxylic d. One mole of the compound reacts with two moles of sodium hydroxide. | | | (i) | Explain the phrase molecular formula. | | | | [2] | | [1] | | |-----|-----| | | | | [1] | | | | | | | | | | [1] | [1] [Total: 12] For Examiner's Use - 6 Until recently, arsenic poisoning, either deliberate or accidental, has been a frequent cause of death. The symptoms of arsenic poisoning are identical with those of a common illness, cholera. A reliable test was needed to prove the presence of arsenic in a body. - (a) In 1840, Marsh devised a reliable test for arsenic. Hydrogen is formed in this reaction. Any arsenic compound reacts with this hydrogen to form arsine which is arsenic hydride, AsH₃. The mixture of hydrogen and arsine is burnt at the jet and arsenic forms as a black stain on the glass. | (i) | Write an equation for the reaction which forms hydrogen. | | |-----|--|----| | | | | | | | [2 | (ii) Draw a diagram which shows the arrangement of the outer (valency) electrons in one molecule of the covalent compound arsine. The electron distribution of arsenic is 2 + 8 + 18 + 5. Use x to represent an electron from an arsenic atom. Use o to represent an electron from a hydrogen atom. [2] | other hydride o | of arsenic has | the composition b | pelow. | | |---|--|--|--|--| | arsenic | 97.4% | hydrogen | 2.6% | | | | • | mula of this hydric | de from the above data. | | | | | | | | | The mass of | | | |] | | Deduce the s | structural form | nula of this hydride | . | [1 |] | | | of a person's | exposure to arsen | n the body. Analysis of the hair provides
nic. To release the absorbed arsenic fo | s | | neasurement of alysis, the prote | of a person's ein has to be | exposure to arsen | m the body. Analysis of the hair provides
ic. To release the absorbed arsenic fo | s | | neasurement of alysis, the prote | of a person's ein has to be | exposure to arsen hydrolysed. | m the body. Analysis of the hair provides
ic. To release the absorbed arsenic fo | s | | neasurement of allysis, the protest what is the n | of a person's ein has to be | exposure to arsen hydrolysed. | m the body. Analysis of the hair provides
nic. To release the absorbed arsenic fo | s | | What is the n | of a person's ein has to be name of the lir | exposure to arsen hydrolysed. nkage in proteins? n be used to hydro | m the body. Analysis of the hair provides
nic. To release the absorbed arsenic fo | s
r | | Name a reag | of a person's ein has to be name of the lir | exposure to arsen hydrolysed. nkage in proteins? n be used to hydro | m the body. Analysis of the hair provides ic. To release the absorbed arsenic fo | s
r | | What is the n | of a person's ein has to be name of the linger ling | exposure to arsen hydrolysed. nkage in proteins? n be used to hydrometer to the hydrometer to be the hydrometer to h | m the body. Analysis of the hair provides ic. To release the absorbed arsenic fo | s
r | | | arsenic Calculate the Show your w The mass of | arsenic 97.4% Calculate the empirical for Show your working. The mass of one mole of t | arsenic 97.4% hydrogen Calculate the empirical formula of this hydric Show your working. The mass of one mole of this hydride is 154 | Calculate the empirical formula of this hydride from the above data. | | For | |------------| | Examiner's | | Use | | (d) | In the 19th Century, a bright green pigment, copper(II) arsenate(V) was used to kill rats | |-----|---| | | and insects. In damp conditions, micro-organisms can act on this compound to produce | | | the very poisonous gas, arsine. | | (i) | Suggest a reason why it is necessary to include the oxidation states in the name of the compound. | |------|--| | | [1] | | (ii) | The formula for the arsenate(V) ion is ${\sf AsO_4^{3-}}$. Complete the ionic equation for the formation of ${\sf copper}(II)$ arsenate(V). | | | Cu ²⁺ +AsO ₄ ³⁻ \rightarrow | | | [Total: 14] | © UCLES 2012 0620/33/O/N/12 | 7 | Ammonia | is made | bv the | Haber | process. | |---|---------|----------|--------|-------|-----------| | • | , | 10 11100 | ~, | | p. 00000. | | $N_{a}(a)$ | + | $3H_{2}(g)$ | \rightleftharpoons | 2NH | (a) | |------------|---|-------------|----------------------|----------------------------|-----| | 1 12(9) | | 01 12(9) | • | — V 13 | 191 | | | 2.67 | | |-----|--|-----| | (a) | State one major use of ammonia. | | | | | [1] | | (b) | Describe how hydrogen is obtained for the Haber process. | | | | | | | | | | | | | [3] | | (c) | This reaction is carried out at a high pressure, 200 atmospheres. State, with an explanation for each, two advantages of using a high pressure. | ["] | | (d) | (i) What is the difference between an endothermic and an exothermic reaction? | | | | | | | | | LI. | For Examiner's Use (ii) Bond breaking is an endothermic process. Bond energy is the amount of energy needed to break or form one mole of the bond. Complete the table and explain why the forward reaction is exothermic. | bond | bond energy
kJ/mol | energy change
kJ | exothermic or endothermic | | | | | |------|-----------------------|---------------------|---------------------------|--|--|--|--| | N≡N | 944 | +944 | endothermic | | | | | | н—н | 436 | 3 × 436 = +1308 | | | | | | | N—H | 388 | | | | | | | |
 | |---------| | | | | | | | ไปไ | |
լսյ | [Total: 13] © UCLES 2012 0620/33/O/N/12 ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. ## DATA SHEET The Periodic Table of the Elements | Group | | | | | | | | | | | | | | | | | | |--|------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|------------------------------|----------------------------------|-----------------------------|--------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|----------------------------| | I | II | | | | | | | | | | | III | IV | V | VI | VII | 0 | | | 1
H
Hydrogen
1 | | | | | | | | | | | | | | | | 4
He
Helium
2 | | 7
Li
Lithium | 9 Be Beryllium 4 | | | | | | | | | | | 11
B
Boron | 12
C
Carbon | 14
N
Nitrogen | 16
O
Oxygen
8 | 19
F
Fluorine | 20
Ne
Neon | | 23
Na
Sodium | Mg
Magnesium | | | | | | | | | | | 27
Al
Aluminium
13 | 28
Si
Silicon | Phosphorus | 32
S
Sulfur | 35.5
C1
Chlorine
17 | 40
Ar
Argon | | 39
K
Potassium | 40
Ca
Calcium
20 | 45
Sc
Scandium
21 | 48
Ti
Titanium
22 | 51
V
Vanadium
23 | 52
Cr
Chromium
24 | 55
Mn
Manganese
25 | 56
Fe
Iron | 59
Co
Cobalt
27 | 59
Ni
Nickel | Cu
Copper
29 | 65
Zn
Zinc | 70
Ga
Gallium | 73
Ge
Germanium
32 | 75
As
Arsenic | 79
Se
Selenium
34 | Br Bromine 35 | 84
Kr
Krypton | | Rubidium 37 | 88
Sr
Strontium
38 | 89
Y
Yttrium | 91
Zr
Zirconium
40 | 93
Nb
Niobium | 96
Mo
Molybdenum
42 | Tc
Technetium
43 | 101
Ru
Ruthenium
44 | 103
Rh
Rhodium
45 | 106
Pd
Palladium
46 | 108
Ag
Silver
47 | 112
Cd
Cadmium
48 | 115
I n
Indium
49 | 119
Sn
Tin | 122
Sb
Antimony
51 | 128
Te
Tellurium
52 | 127

 lodine
 53 | 131 Xe
Xenon 54 | | 133
Cs
Caesium
55 | 137
Ba
Barium
56 | 139
La
Lanthanum
57 * | 178
Hf Hafnium 72 | 181
Ta
Tantalum
73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192
I r
Iridium | 195
Pt
Platinum
78 | 197
Au
Gold
79 | 201
Hg
Mercury | 204
T <i>I</i>
Thallium | 207
Pb
Lead | 209
Bi
Bismuth | Po
Polonium
84 | At
Astatine
85 | Rn
Radon
86 | | Fr
Francium
87 | 226
Ra
Radium
88 | 227
AC
Actinium
89 † | | | | | | | | | | | | | | | | | 58-71 Lantinanoid series Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu | | | | | | | 175
Lu
Lutetium
71 | | | | | | | | | | | | Key X | | | 232
Th
Thorium
90 | Pa
Protactinium
91 | 238
U
Uranium
92 | Np
Neptunium
93 | Pu
Plutonium
94 | Am
Americium
95 | Cm
Curium
96 | Bk Berkelium 97 | Cf
Californium
98 | Es
Einsteinium
99 | Fm
Fermium
100 | Md
Mendelevium
101 | No
Nobelium
102 | Lr
Lawrencium
103 | | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).