MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/31
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0620	31

1 (a) uranium / plutonium / thorium
(b) graphite / carbon
(c) platinum / titanium / mercury / gold

NOT: carbon / graphite
(d) helium
(e) nitrogen / phosphorus
(f) argon

ACCEPT: any ion $2+8+8$ e.g. K^{+}etc.
(g) tellurium

ACCEPT: correct symbol

2 (a) Any three of:
iron is harder
iron has higher density
ACCEPT: heavier or potassium lighter
iron has higher mp or bp
iron has higher tensile strength or stronger
iron has magnetic properties
NOTE: has to be comparison, e.g. iron is hard (0) but iron is harder (1)
NOT: appearance e.g. shiny
ACCEPT: comparative statements relating to potassium
(b) potassium hydrogen (1) and potassium hydroxide (1)
zinc hydrogen (1) and zinc oxide (1)
copper no reaction (1)

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0620	31

3 (a) (i) fractional distillation
(liquid) air
(ii) cracking / heat in presence of catalyst
of alkane / petroleum
to give an alkene and hydrogen
OR: electrolysis (1)
named electrolyte (1)
hydrogen at cathode (1)
OR: from methane (1)
react water / steam (1)
heat catalyst (1)
only ACCEPT: water with methane or electrolysis
(b) (i) the pair with both graphs correct is C

NOTE: mark (b)(ii) independent of (b)(i)
(ii) high pressure favours side with lower volume / fewer moles
this is RHS / product / ammonia
$\% \mathrm{NH}_{3}$ / yield increases as pressure increases
the forward reaction is exothermic
exothermic reactions favoured by low temperatures
$\% \mathrm{NH}_{3}$ / yield decreases as temperature increases
ACCEPT: reverse arguments
(iii) increases reaction rate

ACCEPT: reduces activation energy
OR: decreases the amount of energy particles need to react
OR: economic rate at lower temperature so higher yield

4 (a) (i) (mass at $t=0$) - (mass at $t=5$)
NOTE: must have mass at $t=5$ not final mass
(ii) fastest at origin
slowing down between origin and flat section gradient $=0$
where gradrient $=0$
three of above in approximately the correct positions
(iii) 3 correct comments about gradient $=[2]$

2 correct comments about gradient = [1]
1 correct comment about gradient $=[0]$
(b) start at origin and smaller gradient
same final mass just approximate rather than exact

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0620	31

(c) (i) smaller surface area
lower collision rate
(ii) molecules have more energy
collide more frequently / more molecules have enough energy to react
(d) number of moles of HCl in $40 \mathrm{~cm}^{3}$ of hydrochloric acid,
concentration $2.0 \mathrm{~mol} / \mathrm{dm}^{3}=0.04 \times 2.0=0.08$
maximum number of moles of CO_{2} formed $=0.04$
mass of one mole of $\mathrm{CO}_{2}=44 \mathrm{~g}$
maximum mass of CO_{2} lost $=0.04 \times 44=1.76 \mathrm{~g}$

5 (a) (i) have same molecular formula / both are $\mathrm{C}_{5} \mathrm{H}_{12}$
they have different structural formulae / different structures
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3} /$ any other correct isomer
(b) (i) $\mathrm{CH}_{2}-(\mathrm{Br})-\mathrm{CH}_{2} \mathrm{Br}$

NOT: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
dibromoethane
NOTE: numbers not required but if given must be 1,2
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

NOT: $\mathrm{C}_{3} \mathrm{H}_{8}$
propane
(iii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH} / \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$
butanol
numbers not required but if given must be correct and match formula
(c) (i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(ii) pink / purple
colourless
NOT: clear
(d) $-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{CN})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{CN})-$
correct repeat unit $\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{CN})$
COND: at least 2 units in diagram
continuation

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0620	31

6 (a) (i) (attractive force between) positive ions
and (negative) electrons
opposite charges attract ONLY [1]
electrostatic attraction ONLY [1]
(ii) lattice / rows / layers of lead ions / cations / positive ions

NOT: atoms / protons / nuclei
can slide past each other / the bonds are non-directional
(b) (i) anhydrous cobalt chloride becomes hydrated

ACCEPT: hydrous
(ii) carbon dioxide is acidic
sodium hydroxide and calcium oxide are bases / alkalis
(iii) Any two of:
water, calcium carbonate and sodium carbonate
ACCEPT: sodium bicarbonate
(c) number of moles of CO_{2} formed $=2.112 / 44=0.048$
number of moles of $\mathrm{H}_{2} \mathrm{O}$ formed $=0.432 / 18=0.024$
$x=2$ and $y=1$ NOT: ecf from this line
formula is $2 \mathrm{PbCO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2} / \mathrm{Pb}(\mathrm{OH})_{2} .2 \mathrm{PbCO}_{3}$
[Total:12]

7 (a) (i) hydrogen (atoms) replaced by (atoms) of a different element e.g. chlorine
NOT: substitute
(ii) light required
(b) exothermic reaction gives out energy
endothermic reaction absorbs
takes in energy
(c) bonds broken
energy
C-H
+412
$\mathrm{Cl}-\mathrm{Cl}$
+242
total energy +654
bonds formed energy
C-Cl -338
$\mathrm{H}-\mathrm{Cl} \quad-431$
total energy $\quad-769$
energy change -115

