CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper		
	IGCSE – October/November 2013	0620	31		
1 (a) uranium	uranium / plutonium / thorium				
(b) graphite	graphite / carbon				
	platinum / titanium / mercury / gold NOT: carbon / graphite				
(d) helium			[1]		
(e) nitrogen	 (e) nitrogen / phosphorus (f) argon ACCEPT: any ion 2 + 8 + 8 e.g. K⁺ etc. 				
(g) tellurium ACCEPT	Γ: correct symbol		[1] [Total: 7]		
ACCEPT iron has iron has iron has NOTE: h NOT: ap		is harder (1)	[3]		
(b) potassiur zinc copper	m hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1) no reaction (1)		[5]		
			[Total: 8]		

Page 3			3	Mark Scheme	Syllabus	Paper
	-			IGCSE – October/November 2013	0620	31
3	(a)	(i)		ional distillation id) air		[1] [1]
		(ii)	of al	king / heat in presence of catalyst kane / petroleum ve an alkene and hydrogen		[1] [1] [1]
			nam	electrolysis (1) ed electrolyte (1) rogen at cathode (1)		
			reac heat	from methane (1) et water / steam (1) t catalyst (1)		
			only	ACCEPT: water with methane or electrolysis		
	(b)	(i)		pair with both graphs correct is C FE: mark (b)(ii) independent of (b)(i)		[1]
		(ii)	this i	pressure favours side with lower volume / fewer mo is RHS / product / ammonia H_3 / yield increases as pressure increases	bles	[1] [1] [1]
			exot %N⊦	forward reaction is exothermic hermic reactions favoured by low temperatures H ₃ / yield decreases as temperature increases CEPT: reverse arguments		[1] [1] [1]
		 (iii) increases reaction rate ACCEPT: reduces activation energy OR: decreases the amount of energy particles need to react 				[1] [1]
				[Total: 14]		
4	(a)	(i)		ss at t =0) – (mass at t = 5) FE: must have mass at t = 5 not final mass		[1]
		(ii)	slow	est at origin ving down between origin and flat section gradient = re gradrient = 0	0	
			thre	e of above in approximately the correct positions		[2]
		(iii)	2 co	rrect comments about gradient = [2] rrect comments about gradient = [1] rrect comment about gradient = [0]		[2]
	(b)			rigin and smaller gradient al mass just approximate rather than exact		[1] [1]

Р	Page 4		Mark Scheme	Syllabus	Paper		
			IGCSE – October/November 2013	0620	31		
(c)) (i)	(i) smaller surface area lower collision rate					
	(ii)		ecules have more energy de more frequently / more molecules have enough e	energy to react	[1] [1]		
(d	cor ma ma	number of moles of HCI in 40 cm^3 of hydrochloric acid, concentration 2.0 mol / dm ³ = 0.04 × 2.0 = 0.08 maximum number of moles of CO ₂ formed = 0.04 mass of one mole of CO ₂ = 44 g maximum mass of CO ₂ lost = 0.04 × 44 = 1.76 g					
5 (a) (i)		e same molecular formula / both are C_5H_{12} have different structural formulae / different structu	res	[1] [1]		
	(ii)	CH ₃ .	-CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]		
(b) (i)		-(Br)-CH ₂ Br Γ: C ₂ H ₄ Br ₂		[1]		
		dibro	TE: numbers not required but if given must be 1, 2		[1]		
	(ii)		-CH ₂ -CH ₃ Γ: C ₃ H ₈		[1]		
			bane		[1]		
	b		-CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ nol bers not required but if given must be correct and m	natch formula	[1] [1]		
(c)) (i)		-CH=CH-CH ₂ -CH ₃ -CH=CH-CH ₃		[1] [1]		
	(ii)	colo	/ purple urless Г: clear		[1] [1]		
(d	 (d) -CH₂-CH(CN)-CH₂-CH(CN)- correct repeat unit CH₂-CH(CN) COND: at least 2 units in diagram continuation 						

	Page	5	Mark SchemeSyllabusIGCSE – October/November 20130620			Paper	
						31	
6	(a) (i)	and oppo	(negative) el osite charges	etween) positive ions ectrons attract ONLY [1] ction ONLY [1]		[1] [1]	
	(ii)	NOT	r: atoms / pro	ers of lead ions / cations / positive ions tons / nuclei ch other / the bonds are non-directiona		[1] [1]	
	(b) (i)		ydrous cobalt CEPT : hydrou	chloride becomes hydrated s		[1]	
	(ii)		on dioxide is um hydroxide	acidic and calcium oxide are bases / alkalis		[1] [1]	
	(iii)	wate		rbonate and sodium carbonate n bicarbonate		[2]	
	nu	c) number of moles of CO ₂ formed = $2.112 / 44 = 0.048$ number of moles of H ₂ O formed = $0.432 / 18 = 0.024$					
	<i>x</i> =	= 2 and	d <i>y</i> = 1 NOT :	ecf from this line			
	formula is 2PbCO ₃ .Pb(OH) ₂ / Pb(OH) ₂ . 2PbCO ₃						
						[Total:12]	
7	(a) (i)		ogen (atoms l: substitute) replaced by (atoms) of a different ele	ment e.g. chlorine	[1]	
	(ii)	light	required			[1]	
	én	 exothermic reaction gives out energy endothermic reaction absorbs takes in energy 				[1] [1]	
	C- Cl	(c) bonds broker C-H C <i>l</i> -C <i>l</i> total energy		energy +412 +242 +654		[1]	
	bo C-	nds fo C <i>l</i>		energy –338 –431			
	tot en	H-C <i>l</i> -431 total energy -769 energy change -115 negative sign indicates exothermic			[1] [1] [1]		
						[Total: 8]	