

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MMN. Xiremedabers.com

October/November 2013

1 hour 15 minutes

*	
\rightarrow	
_	
4	
6	
2	
9	
2	
ıv	
∞	
∞	
~	
9	
\sim	
-	
*	

CHEMISTRY					062	20/51
CENTRE NUMBER			CANDIDATE NUMBER			
INAIVIE						

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Paper 5 Practical Test

Electronic calculators may be used.

Practical notes are provided on page 8.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Total				

This document consists of 7 printed pages and 1 blank page.

1 You are going to investigate what happens when aqueous sodium hydroxide reacts with acid **K**.

For Examiner's Use

Read all the instructions below carefully before starting the experiments.

Instructions

You are going to carry out two experiments.

(a) Experiment 1

Use a measuring cylinder to pour $25\,\text{cm}^3$ of acid **K** into a conical flask. Add five drops of phenolphthalein to the flask.

Fill the burette with the aqueous sodium hydroxide to the 0.0 cm³ mark.

Slowly add the aqueous sodium hydroxide to acid \mathbf{K} in the flask and shake the mixture. Continue to add aqueous sodium hydroxide to the flask until the solution shows a permanent colour change.

Measure and record the volume in the table. Complete the table.

Pour the solution away and rinse the conical flask.

	burette reading
final volume/cm ³	
initial volume/cm³	
difference/cm ³	

[3]

(b) Experiment 2

Use a measuring cylinder to pour $50\,\mathrm{cm^3}$ of acid **K** into a conical flask. Add the $0.3\,\mathrm{g}$ of powdered calcium carbonate to the flask and shake the flask until no further reaction is observed.

Add five drops of phenolphthalein to the mixture in the flask.

Fill the burette with aqueous sodium hydroxide and record the burette reading. Slowly add aqueous sodium hydroxide from the burette to the flask and shake the mixture. Continue to add aqueous sodium hydroxide to the flask until the solution shows a permanent colour change.

Measure and record the volume in the table. Complete the table.

	burette reading	
final volume/cm ³		
initial volume/cm ³		
difference/cm ³		

[3]

For
Examiner's
1100

(c)		What colour change was observed after the sodium hydroxide solution was added to the flask?		
	fron	n to [2]		
(d)	Wha	at type of chemical reaction occurs when acid K reacts with sodium hydroxide?		
(e)		experiment 1 was repeated using 50 cm ³ of acid K , what volume of sodium hydroxide ald be required to change the colour of the indicator?		
(f)	(i)	What is the effect of adding 0.3 g of powdered calcium carbonate to acid K ?		
	(ii)	Use your answers from (b) and (e) to work out the difference in the volume of sodium hydroxide added when 0.3 g of calcium carbonate is mixed with 50 cm³ of acid K in Experiment 2.		
	(iii)	Estimate the mass of calcium carbonate that would need to be added to $50\mathrm{cm^3}$ of acid \mathbf{K} to require $0.0\mathrm{cm^3}$ of sodium hydroxide.		
(g)	Wha	[1] at would be the effect on the results if the solutions of acid ${\bf K}$ were warmed before		
(3)	add	ing the sodium hydroxide? Give a reason for your answer.		
		son[2]		

(h)	Sug	Suggest the advantage, if any, of	
	(i)	using a pipette to measure the volume of acid K .	Use
		[2]	
	(ii)	using a polystyrene cup instead of a flask.	
		[2]	
		[Total: 22]	

You are provided with two liquids, L and M.
Carry out the following tests on L and M, recording all of your observations in the table.
Conclusions must not be written in the table.

	tests	observations
tests o	on liquid L	
(a) Describe the appearance of liquid L.		[1]
1	e liquid L into five equal portions in ate test-tubes.	
(b) (i)	Add the first portion of liquid L to the test-tube containing the iodine crystal. Stopper the test-tube and shake the contents.	[1]
	Now add an equal volume of liquid M to the test-tube, stopper and shake the contents. Leave to stand for five minutes and continue to part (c).	[2]
(ii)	After five minutes, remove most of the top layer using a teat pipette and add ethanol to the liquid which you have removed. Stopper the test-tube and shake the contents. Leave to stand for five minutes.	[2]
(c) To the second portion of liquid L , add a few drops of dilute nitric acid and about 1 cm ³ of barium nitrate solution.		[1]
(d) To the third portion of liquid L , add a few drops of dilute nitric acid and about 1 cm ³ of silver nitrate solution.		[2]
1	to the fourth portion of liquid L , add about cm ³ of aqueous copper sulfate, shake nd leave to stand for five minutes.	[2]
2	to the fifth portion of liquid L , add about cm ³ of aqueous hydrogen peroxide. low add about 1 cm ³ of starch solution.	[3]

(g)	Why does the colour of liquid L change in test (b)(i)?	For Examiner's Use
	[1]	
(h)	What conclusions can you draw about liquid M from test (b)(i) ?	
	[2]	
(i)	What conclusions can you draw about liquid L?	
	[1]	
	[Total: 18]	

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al³+)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ +)	ammonia produced on warming	_
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.