UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xiremepepers.com 1 hour 15 minutes | * | | |---|--| | 7 | | | 5 | | | 0 | | | 6 | | | 0 | | | ∞ | | | _ | | | 7 | | | W | | | _ | | | * | | | CENTRE
NUMBER | | CANDIDATE
NUMBER | | |------------------|----------|---------------------|------------| | CHEMISTRY | | | 0620/53 | | Paper 5 Praction | cal Test | October/Nove | ember 2013 | Candidates answer on the Question Paper. Additional Materials: As listed in the Confidential Instructions #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. Practical notes are provided on page 8. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | |--------------------|--|--| | Total | | | This document consists of 6 printed pages and 2 blank pages. For Examiner's Use 1 You are going to investigate the reaction between aqueous potassium manganate(VII), solution **C**, and two different acidic solutions, **D** and **E**. Read all the instructions below carefully before starting the experiments. #### Instructions You are going to carry out three experiments. ## (a) Experiment 1 Fill the burette with the solution **C** of potassium manganate(VII) to the 0.0 cm³ mark. Using a measuring cylinder, pour 25 cm³ of solution **D** into the conical flask. Add $1.0\,\mathrm{cm^3}$ of the solution **C** to the flask, with shaking. Continue to add solution **C** to the flask until the mixture just turns permanently pink. Record the burette reading in the table and complete the table. Pour away the contents of the conical flask and rinse the flask with distilled water. | | burette reading | |---|-----------------| | final burette reading/cm ³ | | | initial burette reading/cm ³ | | | difference/cm ³ | | [3] ## (b) Experiment 2 Repeat Experiment 1 using 25 cm³ of solution **E** instead of solution **D**. Record the burette readings in the table and complete the table. | | burette reading | |---|-----------------| | final burette reading/cm ³ | | | initial burette reading/cm ³ | | | difference/cm ³ | | [3] ## (c) Experiment 3 | To about 2 cm ³ of so | olution ${f E}$ in a te | est-tube, add | an equal v | olume of | aqueous | ammonia. | |----------------------------------|-------------------------|---------------|-------------|------------|-----------|-----------| | Shake the test-tube | and note any o | bservations. | Leave the r | mixture to | stand for | 5 minutes | | and note any chang | es. | | | | | | | | | | | | | | |
 |
 | | |------|------|-----| | | | [2] | | (a) | (1) | added to the flask in Experiment 1? | |-----|-------|--| | | | [1] | | | (ii) | Why is an indicator not added to the flask? | | | | [1] | | (e) | (i) | In which experiment was the greatest volume of potassium manganate (VII) solution used? | | | | [1] | | | (ii) | Compare the volumes of potassium manganate(VII) used in Experiments 1 and 2. | | | | [1] | | | (iii) | Suggest an explanation for the difference in volumes. | | | | | | | | | | | | [2] | | (f) | | xperiment 2 was repeated using 12.5cm^3 of solution E , what volume of potassium aganate(VII) solution would be used? Explain your answer. | | | ••••• | | | | | [2] | | (g) | | e one advantage and one disadvantage of using a measuring cylinder for solutions and E . | | | adv | antage | | | disa | dvantage[2] | | | | | | (h) | Ехр | lain your observations in Experiment 3. | | | | | | | | [3] | | | | [Total: 21] | You are provided with liquid **F**. Carry out the following tests on the liquid, recording all of your observations in the table. Conclusions must **not** be written in the table. | | tests | observations | |-----|---|--------------| | 1 | de liquid F into five equal portions in arate test-tubes. | | | (a) | Describe the appearance of liquid F . | [1] | | | Test the pH of the liquid. | [1] | | | To the first portion of liquid F , add an equal volume of dilute sulfuric acid. Now add excess aqueous sodium hydroxide and shake the mixture. | [2] | | (b) | To the second portion of liquid F , add an equal volume of dilute sulfuric acid followed by about 2 cm ³ of hydrogen peroxide. Shake the mixture and test the gas given off with a splint. | [1] | | (c) | To the third portion of liquid F , add aqueous silver nitrate followed by excess dilute nitric acid. Shake the mixture. | [3] | | (d) | To the fourth portion of liquid F , add aqueous barium nitrate followed by excess dilute nitric acid. Shake the mixture. | [3] | | (e) | To the fifth portion of liquid F , add an equal volume of sulfuric acid and one spatula measure of iron filings. | [2] | | | 5 | | |-----|--|--------------------------| | (f) | What type of reaction happened in test (a)? Explain your answer. | For
Examiner's
Use | | | type of reaction | | | | explanation | | | | [2] | | | (g) | Identify the gas given off in test (b) . | | | (h) | Draw one conclusion about liquid F . | | | | [1] | | | | [Total: 19] | | # **BLANK PAGE** # **BLANK PAGE** ## **NOTES FOR USE IN QUALITATIVE ANALYSIS** ## **Test for anions** | anion | test | test result | |---|--|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (Cl ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | iodide (I ⁻)
[in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | yellow ppt. | | nitrate (NO ₃ ⁻)
[in solution] | add aqueous sodium hydroxide then aluminium foil; warm carefully | ammonia produced | | sulfate (SO ₄ ²⁻)
[in solution] | acidify with dilute nitric acid, then aqueous barium nitrate | white ppt. | # Test for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--|--|--| | aluminium (A l^{3+}) white ppt., soluble in excess giving a colourless solution | | white ppt., insoluble in excess | | ammonium (NH ₄ +) | ammonia produced on warming | _ | | calcium (Ca ²⁺) | white ppt., insoluble in excess | no ppt., or very slight white ppt. | | copper (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess giving a colourless solution | white ppt., soluble in excess giving a colourless solution | ## **Test for gases** | gas | test and test results | |-----------------------------------|----------------------------------| | ammonia (NH ₃) | turns damp red litmus paper blue | | carbon dioxide (CO ₂) | turns limewater milky | | chlorine (Cl ₂) | bleaches damp litmus paper | | hydrogen (H ₂) | 'pops' with a lighted splint | | oxygen (O ₂) | relights a glowing splint | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.