CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2015 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE® components.

Page 2				Paper
		Cambridge IGCSE – March 2015	0620	32
1 ((a)	chlorine / argon		[1]
((b)	chlorine		[1]
((c)	magnesium		[1]
((d)	argon		[1]
((e)	aluminium		[1]
((f)	sodium		[1]
				[Total:6]
2 ((a)	Atoms of the same element/atoms with same proton number/atoms wit atomic number	h same	[1]
		different neutron number/nucleon number/mass number		[1]

(b)

)							
	particle	number of protons	number of electrons	number of neutrons	nucleon number	symbol or formula	
	Α						
	В				23 (1)	Na(1) ⁺ (1)	
	С		10(1)		16(1)		
	D	13 (1)		15 (1)			

[7]

[Total:9]

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – March 2015	0620	32

3

(a) (making) fertilisers/nitric acid/nylon/explosives/urea (for) cleaning products (allow oven cleaner)/refrigeration [1] (b) equilibrium/reversible [1] (c) (nitrogen)air/atmosphere [1] (hydrogen) methane/water/steam/alkane/named alkane/hydrocarbon/crude oil [1] or petroleum/natural gas (d) iron [1] [1] (e) (i) rate increases/faster [1] More (effective) collisions (ii) yield decreases [1] (forward reaction) exothermic/reverse reaction endothermic/high temp favours endothermic reaction [1] (f) (i) yield increases [1] less / fewer molecules or moles or volume on RHS ORA/ high pressure favours reaction which produces fewer molecules or moles or volume [1] (ii) particles/molecules closer/more particles per unit area or volume/more molecules per unit area or volume/more concentration/particles have less space between them and more collisions [1] [1] (iii) safety issues/higher cost (g) 3 bond pairs between N & H [1] Lone pair on N [1] (h) (i) proton/H⁺ acceptor [1] (ii) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ [2] Formula of $(NH_4)_2SO_4$ (1) The rest (1)

[Total:18]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0620	32

4 (a) (i) 82.76/12 and 17.2(4)(/1)

[1]

[1]

$$C_2H_5$$

OR

$$82.76/100 \times 58 = 48$$
 and $17.24/100 \times 58 = 10$

[1]

[1]

(ii)
$$(C_2H_5 =) 29$$

 C_2H_5

[1]

$$(58/29 = 2) C_4H_{10}$$

[1]

OR:

$$82.76/100 \times 58 = 48$$
 and $17.24/100 \times 58 = 10$

[1]

$$48/12 = 4 \ 10/1 = 10$$
 (therefore) C_4H_{10}

or evaluation i.e. 48 and 10

[1]

(b) (i)
$$C_nH_{2n}$$

[1]

[1]

(c) (contains) double bond/triple bond/multiple bond(s)/not all bonds are single

[1] [1]

(contains) carbon and hydrogen only

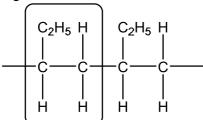
- 4 -

(d) bromine/bromine water

[1]

no change/stays brown/orange/yellow/red-brown or only changes in UV

[1]


(brown/orange/yellow) to colourless/decolourised

[1]

(e) (i) circle/brackets around any 2 consecutive carbon atoms in the main chain and all attached atoms

[1]

e.g.

(ii) CH₃CH₂CH=CH₂ / C₂H₅CH=CH₂ (double bond must be shown)

[1]

[1]

P	age 5	Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – March 2015	0620	32
	(iii)	$(CH_3)_2C=CH_2/CH_3CH_2CHCH_3/(CH_2)_2CHCH_3/(CH_2)_4$		[1]
				[Total:15]
5	(a) Ba	uxite		[1]
	(h) ca	rbon/graphite		[1]
	(b) ca	bon/ graphite		ניו
	(c) im	proves conductivity/better conductor		[1]
	Lo	wer (operating) temperature/save energy/saves electricity/saves he	eat	[1]
	(d) an	ode: $2O^{2-} \rightarrow O_2 + 4e^-/2O^{2-} - 4e^- \rightarrow O_2$		[1]
	ca	thode: $Al^{3^+} + 3e^- \rightarrow Al / Al^{3^+} \rightarrow Al - 3e^-$		[1]
	(a) (i)	Iron carbon aluminium /Fo. C. A1		[4]
	(e) (i)	Iron carbon aluminium/Fe, C, Al		[1]
	(ii)	Aluminium oxide is not reduced by carbon but iron(III) oxide is		[1]
	(f) ha	ematite / hematite		[1]
	(g) All	ow: multiples in (i) to (iv)		
	(i)	$C + O_2 \rightarrow CO_2$		[1]
	(ii)	$CO_2 + C \rightarrow 2CO$		[1]
	(iii)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 / Fe_2O_3 + 3C \rightarrow 2Fe + 3CO /$		
	(,	$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$		[1]
	(iv)	$CaO \ + \ SiO_2 \ \rightarrow \ CaSiO_3 \ / \ CaCO_3 \ + \ SiO_2 \ \rightarrow \ CaSiO_3 \ + \ CO_2$		[1]
				[Total:13]
6	(a) An	y two from: bubbles/effervescence/fizzing		
	•	(some of the) solid/copper carbonate dissolves/disappears or sol	me (brown)	solid
	•	seen (undissolved) (colourless) solution or liquid turns blue		[2]
				_

Page (6	Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – March 2015	0620	32
(b)	filte	r/centrifuge/decant		[1]
	was	sh with (distilled) water		[1]
	(dry	with) filter paper/tissues/warm windowsill/in sun/oven/fan/heat		[1]
(c)	(i)	Blue precipitate/ppt		[1]
	(ii)	$Cu^{2+} + 2OH^{-} \rightarrow Cu(OH)_{2}$		[1]
(d)	(i)	$Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(g)$		
		Equation		[1]
		State symbols of correct chemical equation		[1]
	(ii)	carbon/hydrogen		[1]
				[Total:10]
7 (a)		Any two from: yeast/20–40 °C/anaerobic or without oxygen or without air/(aqueosolution or water or aqueous	ous)	[2]
(b)	(i)	Mr = 180 (1) (30/180) = 0.167 (1)		[2]
	(ii)	2×0.167 or 2×46 or 0.333 or 92		[1]
		$(2 \times 0.167 \times 46) = 15.3(33)$ (g)		[1]
((iii)	$(2 \times 0.167 \times 24) = 8 \text{ (dm}^3)$		[1]
(c)	(i)	Crude oil/petroleum		[1]
	(ii)	$C_2H_4 + H_2O \rightarrow C_2H_5OH/CH_3CH_2OH$		[1]
				[Total:9]