CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Р	age 2			Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0620	32
1	(a)	foo	dstuffs or drugs		[1]
	(b)	(i)	simple distillation fractional distillation or diffusion fractional distillation filtration or evaporation chromatography		[5]
		(ii)	M1 dissolving M2 filtration M3 evaporation or heat (to crystallisation point) M4 crystallisation or allow leave to cool or		[4]
			M3 crystallisation M4 filtration		
			OR: Adding to H ₂ SO ₄ method		
			M1 Add excess mixture to acid (or until no more dissolves) M2 Filtration or		
			M1 Add excess acid to mixture M2 With heat		
			eated to dryn	ess.	
			or M3 crystallisation M4 filtration		
					[Total: 10]
2	(a)		r + 3e ⁻ → A <i>l</i> ecies (1) balancing (1)		[2]
	(b)	(i)	$AlCl_3 + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1)		[2]
		(ii)	M1 electrolysis		[1]
			M2 molten sodium chloride or		[1]
			M1 Add named more reactive metal (e.g. K) M2 Molten sodium chloride		
	(c)	(i)	bauxite		[1]
		(ii)	M1 aluminium oxide / amphoteric oxide dissolves OR iron(III) oxid not	le / basic oxi	de does [1]
			M2 Filter COND on M1		[1]

	Cambridge IGCSE – October/November 2014	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0620	32
ĺ	•		[2
iv)	M1 = Any one correct equation.		
	Oxygen comes from oxide ions		
	Anode reacts with oxygen / burns to form CO ₂		
	Anode reacts with limited oxygen / incompletely burns to form carbo or $2C + O_2 \rightarrow 2CO$	n monoxid	е
	-		
	Fluorine comes from cryolite or fluoride ions		[5
i)	Has an impervious or non-porous or passive or unreactive or prote	ctive oxide	layer [1
	good conductor of heat high melting point		[2
•			[2
•		1-ene or bu	ıt-2-ene o [1
iii)	M1 same molecular formula		[1
			[1
•	one an alkane, the other an alkene		
	-	double bor	nd
	both alkanes or both saturated		[1
	iv) ii) iii) iiv)	increases conductivity reduces cost OR energy need iv) M1 = Any one correct equation. M2 Oxygen mark Oxygen comes from oxide ions or 20² → O₂ + 4e M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO₂ or C + O₂ → CO₂ M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbon or 2C + O₂ → 2CO or CO₂ reacts with the anode to form carbon monoxide or CO₂ + C → 2CO M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or 2F⁻→ F₂ + 2e⁻ i) Has an impervious or non-porous or passive or unreactive or prote ii) Any two from: good conductor of heat high melting point Unreactive towards foods ii) C₄H₃ only CH₂ (Allow C₁H₂) iii) Any unambiguous structural formula of methyl cyclopropane or but- methyl propene iii) M1 same molecular formula M2 different structural formulae or different structures or different arrangement of atoms iv) If 'No': one an alkane, the other an alkene or	increases conductivity reduces cost OR energy need iv) M1 = Any one correct equation. M2 Oxygen mark Oxygen comes from oxide ions or 20 ² → 0 ₂ + 4e M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO ₂ or C + O ₂ → CO ₂ M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbon monoxide or 2C + O ₂ → 2CO or CO ₂ reacts with the anode to form carbon monoxide or CO ₂ + C → 2CO M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or 2F ⁻ → F ₂ + 2e ⁻ i) Has an impervious or non-porous or passive or unreactive or protective oxide ii) Any two from: good conductor of heat high melting point Unreactive towards foods ii) C ₄ H ₈ only CH ₂ (Allow C ₁ H ₂) iii) Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but methyl propene iii) M1 same molecular formula M2 different structural formulae or different structures or different arrangement of atoms iv) If 'No': one an alkane, the other an alkene or one is saturated / has single bonds, the other is unsaturated / has a double bor ignore: references to the 'functional group' If 'yes' both alkanes or both saturated

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0620	32

- (b) (i) M1 Action of heat or catalyst or thermal decomposition (on an alkane) [1] Ignore steam. Ignore pressure.
 - M2 Long-chained molecules or alkanes form smaller molecules (not smaller fraction) or forms smaller alkenes (or alkanes) [1]
 - (ii) $C_{10}H_{22}$ [1]
- (c) (i) M1 Correct structure of one repeat unit [1]
 - M2 Continuation bonds **COND** on M1 [1]
 - M3 use of brackets and subscript 'n' **COND** on M1 and M2 [1]

$$\begin{array}{c|c}
 & H & H \\
\hline
 & C & C \\
\hline
 & I & I \\
\hline
 & CH_3 & CH_3 & n
\end{array}$$
 = 3 marks

$$\begin{array}{c|c}
H & H \\
\hline
I & I \\
C & C \\
C & I \\
C & C \\
C$$

- (ii) dibromoethane or 1,2-dibromoethane [1]
- **4 (a)** M1 brass [1]
 - M2 copper **COND** on M1 [1]
 - (b) (i) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ [2] species (1) balancing (1)
 - (ii) Manufacture of sulfuric acid
 - or bleach or making wood pulp or making paper
 - **or** food or fruit juice or wine preservative **or** fumigant or sterilising

[1]

(c) (i) sulfuric acid [1]

	ugo (Cambridge IGCSE – October/November 2014	0620	32
4	(c)	(ii)	Zn ²⁺ + 2e → Zn		[1]
			oxygen or water Allow O ₂ and H ₂ O if no name seen		[1]
			sulfuric acid Allow: H ₂ SO ₄ if no name seen		[1]
4	(d)	(i)	from zinc to carbon (clockwise direction on or near the wire)		[1]
		(ii)	to allow ions to flow		[1]
		(iii)	oxidation and loss of electron(s) or increase in oxidation number/state		[1]
			reduction and decrease in oxidation number/state or gain of electron(s)		[1]
					[Total: 13]
5	(a)	(i)	M1 Contain carbon, hydrogen and oxygen (only)		[1]
			M2 hydrogen and oxygen is in a 2:1 ratio (or in the same ratio as w	ater)	[1]
		(ii)	M1 -O- linkage		[1]
			M2 3 monomer units with 3 blocks and 3 Oxygen atoms Cond		[1]
			0 = 2 marks		
5	(b)	cata	alyst		[1]
		biol	ogical or protein		[1]
5	(c)	(i)	САВ		[2]
			ABC = 1 ACB = 1 BCA = 1 CBA = 1 BAC = 0 Allow 70 for C, 40 for B and 20 for A		
		(ii)	M1 Energy mark: at higher temperature particles/molecules more move faster	nave more	energy or [1]
			M2 Collision frequency mark: collide more frequently/often or more time or higher rate of collisions. Ignore: 'more collisions'	e collisions	per unit [1]
			M3 Collision energy mark: more molecules have enough energy to collisions are above activation energy or successful	react or m	ore [1]

Mark Scheme

Syllabus

Paper

Page 5

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0620	32

(iii) C rate zero or enzymes denatured

[1]

[Total: 12]

- **6 (a)** making fertilisers or pickling metals or making fibres or making phosphoric acid/phosphates making dyes or making paints/pigments/dyes or making paper making plastics or making detergents or tanning leather or battery acid. [1]
 - (b) (i) add water (to yellow solid or to (anhydrous) iron(II) sulfate or to FeSO $_4$ or to products [1]

goes green [1]

(ii) M1 Sulfur trioxide reacts with water to make sulfuric acid or equation [1]

M2 sulfur dioxide reacts with oxygen to form sulfur trioxide or equation [1]

(iii) M1 = 2.07 Allow 2.1 or 2.0666...7

M2 = 62.8.g

M3 = (M2/152 =) 0.41(3)

M4 (=M1/M3) rounded to the nearest whole number \times = 5 [4]

6 (c) (i) nitric acid or nitric(V) acid or HNO_3 [1]

(ii) $2KNO_3 = 2KNO_2 + O_2$ [2] Species (1) Balance (1)

[Total: 12]