

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/22

Paper 2 Multiple Choice (Extended) May/June 2016

45 Minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

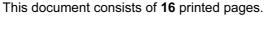
There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

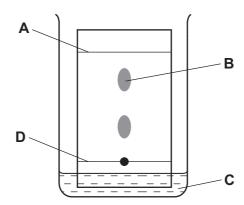
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

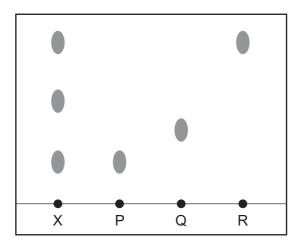
Any rough working should be done in this booklet.


A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.


© UCLES 2016


1 The particles of a substance gain energy and change from a regular ordered structure to a disordered structure with large distances between the particles.

Which change of state is described?

- **A** boiling
- **B** evaporation
- **C** melting
- **D** sublimation
- 2 In the chromatography experiment shown, which label represents the solvent front?

3 X is a mixture of colourless compounds. The diagram shows a chromatogram of X and of three pure compounds, P, Q and R.

Which statement is **not** correct?

- **A** A locating agent was used to develop the chromatogram of X.
- **B** P and R could be present in X.
- **C** P and R have different solubilities in the solvent.
- **D** Q has a greater R_f value than R.

4 Whi	ch statements	about isoto	pes of the	same elem	ent are correct?
--------------	---------------	-------------	------------	-----------	------------------

- 1 They are atoms which have the same chemical properties because they have the same number of electrons in their outer shell.
- 2 They are atoms which have the same number of electrons and neutrons but different numbers of protons.
- 3 They are atoms which have the same number of electrons and protons but different numbers of neutrons.

A 1 and 2

B 1 and 3

C 2 only

D 3 only

5 The table shows the electronic structure of four atoms.

atom	electronic structure
W	2,8,1
X	2,8,4
Y	2,8,7
Z	2,8,8

Which two atoms combine to form a covalent compound?

A W and X

B W and Y

C X and Y

D X and Z

- 6 Which statement describes the attractive forces between molecules (intermolecular forces)?
 - A They are strong covalent bonds which hold molecules together.
 - **B** They are strong ionic bonds which hold molecules together.
 - **C** They are weak forces formed between covalently-bonded molecules.
 - **D** They are weak forces which hold ions together in a lattice.
- 7 Metals consist of a lattice of positive ions in a 'sea of electrons'.

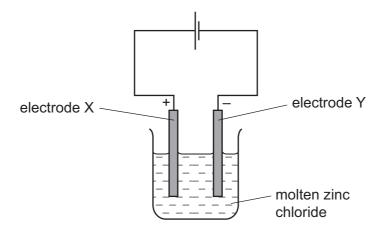
Why is aluminium malleable?

- **A** Its ions are attracted to the 'sea of electrons'.
- **B** Its ions are tightly packed together.
- **C** Its ions repel each other.
- **D** Its layers of ions can slide over each other.

8 A sample of 16.0 g of a metal oxide, MO, is reduced to 12.8 g of the metal, M.

What is the relative atomic mass, A_r, of M?

- **A** 32
- **B** 64
- **C** 80
- **D** 128

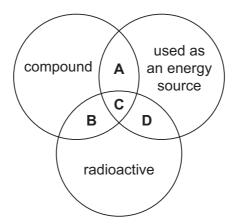

9 The equation for the reaction between calcium carbonate and hydrochloric acid is shown.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$$

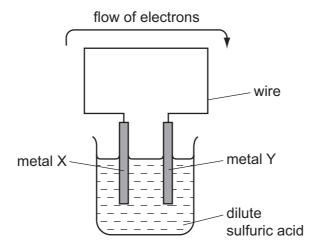
How many moles of calcium carbonate will give 24 cm³ of carbon dioxide when reacted with an excess of the acid?

- A 1 mol
- **B** 0.1 mol
- **C** 0.01 mol
- **D** 0.001 mol

10 The diagram shows the electrolysis of molten zinc chloride, ZnCl₂.

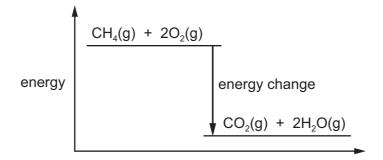

Which statement is correct?

- **A** Oxidation occurs at electrode X and the equation is: $2Cl^- \rightarrow Cl_2 + 2e^-$.
- **B** Oxidation occurs at electrode Y and the equation is: $Zn^{2+} + 2e^{-} \rightarrow Zn$.
- **C** Reduction occurs at electrode X and the equation is: $Zn^{2+} + 2e^{-} \rightarrow Zn$.
- **D** Reduction occurs at electrode Y and the equation is: $2Cl^- \rightarrow Cl_2 + 2e^-$.


© UCLES 2016

11 The diagram shows some properties that substances may have.

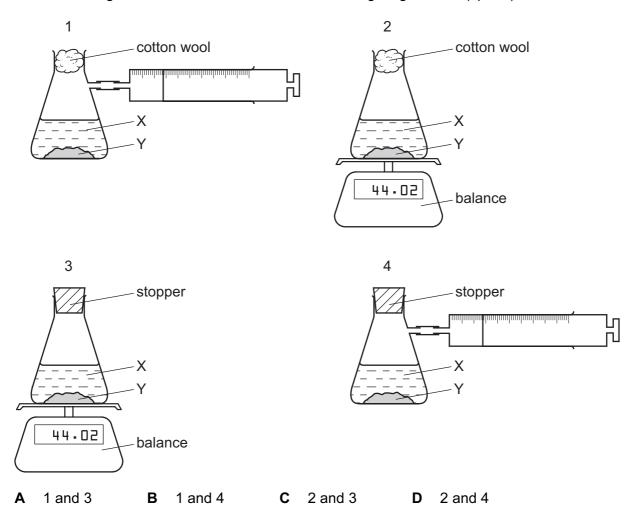
To which labelled part of the diagram does ²³⁵U belong?


12 The diagram shows a simple cell.

For which pair of metals would electrons flow from metal X to metal Y?

	X	Y
Α	copper	iron
В	copper	zinc
С	iron	zinc
D	zinc	iron

13 The energy level diagram for the combustion of methane is shown.



Which row gives the equation and energy change for this reaction?

	equation	energy change in kJ/mol
Α	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$	+891
В	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$	-891
С	$CH_4(g) \ + \ 2O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2H_2O(I)$	+891
D	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$	- 891

14 A liquid X reacts with solid Y to form a gas.

Which two diagrams show suitable methods for investigating the rate (speed) of the reaction?

15 Which row describes how the energy of collision between particles changes when concentration and temperature are increased?

	concentration	temperature
Α	increases	increases
В	increases	no change
С	no change	increases
D	no change	no change

16 Methanol is made by reacting carbon monoxide with hydrogen.

The reaction is exothermic and is a chemical equilibrium.

The equation for the reaction is shown.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

Which changes in temperature and pressure increase the yield of methanol?

	temperature	pressure
Α	decrease	decrease
В	decrease	increase
С	increase	decrease
D	increase	increase

17 Which equation represents a reduction reaction?

$$A \quad Fe^{2+} + e^{-} \rightarrow Fe^{3+}$$

$$\mathbf{B} \quad \mathsf{Fe^{2+}} \, \rightarrow \, \mathsf{Fe^{3+}} \, + \, \mathsf{e^{-}}$$

$$\textbf{C} \quad \text{Fe}^{\text{3+}} \, + \, \text{e}^{\text{-}} \, \rightarrow \, \text{Fe}^{\text{2+}}$$

D
$$Fe^{3+} \rightarrow Fe^{2+} + e^{-}$$

18 Which statements are properties of an acid?

1 reacts with ammonium sulfate to form ammonia

2 turns red litmus blue

	1	2
Α	✓	✓
В	✓	X
С	X	✓
D	X	X

19 Which row describes whether an amphoteric oxide reacts with acids and bases?

	reacts with acids	reacts with bases
Α	no	no
В	no	yes
С	yes	no
D	yes	yes

20 Silver chloride is insoluble in water and is prepared by precipitation.

Which two substances can be used to make silver chloride?

- A barium chloride and silver nitrate
- B hydrochloric acid and silver
- C hydrochloric acid and silver bromide
- **D** sodium chloride and silver iodide

21 Where in the Periodic Table is the metallic character of the elements greatest?

	left or right side of a period	at the top or bottom of a group
Α	left	bottom
В	left	top
С	right	bottom
D	right	top

22 Rubidium is a Group I metal.

Which statement about rubidium is **not** correct?

- A It has a higher melting point than lithium.
- **B** It has one electron in its outer shell.
- **C** It reacts vigorously with water.
- **D** It reacts with chlorine to form rubidium chloride, RbC*l*.

23 The table gives information about four elements, P, Q, R and S.

	melting point in °C	electrical conductivity of element when solid	density in g/cm ³	colour of iodide of element
Р	98	good	0.97	white
Q	-39	good	13.53	red
R	1410	poor	2.33	colourless
S	1535	good	7.87	green

Which elements could be transition elements?

- A P, Q and S
- **B** Q and S only **C** R and S only **D** S only

24 Part of the Periodic Table is shown.

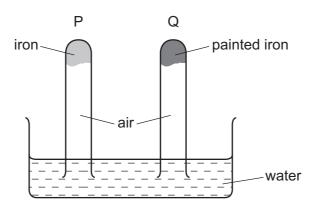
Which element is a gas that does not form a compound with potassium?

25 Some magnesium compounds undergo thermal decomposition.

What are the products of thermal decomposition of magnesium nitrate, Mg(NO₃)₂, and magnesium hydroxide, Mg(OH)₂?

	$Mg(NO_3)_2$	Mg(OH) ₂
Α	MgO, NO ₂ and O ₂	MgO and H₂O
В	MgO, NO_2 and O_2	MgO and H ₂
С	Mg(NO ₂) ₂ and O ₂	MgO and H₂O
D	Mg(NO ₂) ₂ and O ₂	MgO and H ₂

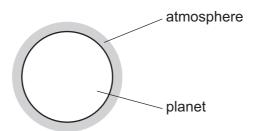
26 Which property is **not** considered a typical metallic property?


- A good conductor of heat
- **B** low melting point
- **C** malleable (can be hammered into shape)
- **D** strong

27 Iron from a blast furnace is treated with oxygen and with calcium oxide to make steel.

Which substances in the iron are removed?

	oxygen removes	calcium oxide removes
Α	carbon	acidic oxides
В	carbon	basic oxides
С	iron	acidic oxides
D	iron	basic oxides


- 28 Why is cryolite used during the extraction of aluminium by electrolysis?
 - **A** It is a catalyst for the reaction.
 - **B** It lowers the melting point of the electrolyte.
 - **C** It protects the anodes.
 - **D** It separates the aluminium from the electrolyte.
- 29 The diagram shows an experiment to investigate how paint affects the rusting of iron.

What happens to the water level in tubes P and Q?

	tube P	tube Q
Α	falls	rises
В	no change	rises
С	rises	falls
D	rises	no change

30 A new planet has been discovered and its atmosphere has been analysed.

The table shows the composition of its atmosphere.

gas	percentage by volume
carbon dioxide	4
nitrogen	72
oxygen	24

Which gases are present in the atmosphere of the planet in a higher percentage than they are in the Earth's atmosphere?

- A carbon dioxide and oxygen
- B carbon dioxide only
- C nitrogen and oxygen
- **D** nitrogen only
- 31 The gases coming from a car's engine contain oxides of nitrogen.

How are these oxides formed?

- A Nitrogen reacts with carbon dioxide.
- **B** Nitrogen reacts with carbon monoxide.
- C Nitrogen reacts with oxygen.
- D Nitrogen reacts with petrol.

32 Ammonia is manufactured by a reversible reaction.

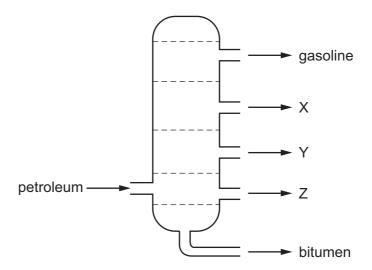
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The forward reaction is exothermic.

What is the effect of increasing the pressure on the percentage yield and rate of formation of ammonia?

	percentage yield	rate of formation
Α	decreases	decreases
В	decreases	increases
С	increases	decreases
D	increases	increases

33 The Contact process is used for the manufacture of sulfuric acid.


Which statement about this process is **not** correct?

- A A catalyst of iron is used.
- **B** Oxygen from the air is used to react with sulfur dioxide.
- **C** Sulfur trioxide dissolves in sulfuric acid to form oleum.
- **D** The temperature used is around 450 °C.
- **34** Lime (calcium oxide) is used to treat waste water from a factory.

Which substance is removed by the lime?

- **A** ammonia
- B sodium chloride
- C sodium hydroxide
- **D** sulfuric acid

35 The diagram shows the separation of petroleum into fractions.

What could X, Y and Z represent?

	Х	Y	Z		
Α	diesel oil	lubricating fraction	paraffin		
В	lubricating fraction	diesel oil	paraffin		
С	paraffin	lubricating fraction	diesel oil		
D	paraffin	diesel oil	lubricating fraction		

36 Which compound is **not** an alkane, C_nH_{2n+2}?

- A CH₃CH₂CH₂CH₃
- B (CH₃)₂CHCH₃
- C CH₃CHCHCH₃
- \mathbf{D} (CH₃)₃CH

37 An ester is formed when a carboxylic acid reacts with an alcohol.

Which ester is formed when propanoic acid and ethanol react?

- A CH₃CO₂CH₂CH₃
- B CH₃CO₂CH₂CH₂CH₃
- C CH₃CH₂CO₂CH₃
- D CH₃CH₂CO₂CH₂CH₃

- **38** What is an advantage of producing ethanol by fermentation of sugar compared to the catalytic addition of steam to ethene?
 - A The alcohol produced is purer.
 - **B** The process is faster.
 - **C** The process uses high temperature.
 - **D** The process uses renewable raw materials.
- 39 In which row are the monomer and polymer chain correctly matched?

	monomer	part of the polymer chain
Α	CH ₃ CH=CHCH ₃	-CH(CH ₃)-CH(CH ₃)-CH(CH ₃)-
В	CH ₂ =CHC <i>l</i>	-CHC1-CHC1-CHC1-
С	CH ₃ CH=CH ₂	-CH ₃ -CH-CH ₂ -CH ₃ -CH-CH ₂ -
D	CH ₂ =CHCH ₂ CH ₃	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₂ CH ₃)-

- 40 Which two polymers have the same linkages bonding the monomers together?
 - A nylon and complex carbohydrate
 - **B** nylon and protein
 - C Terylene and complex carbohydrate
 - **D** Terylene and protein

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

Group																	
	II						III	IV	V	VI	VII	VIII					
	Key 1 H hydrogen 1													2 He helium 4			
3	4			atomic numbe				,				5	6	7	8	9	10
Li	Be		ato	mic sym	ıbol							В	С	N	0	F	Ne
lithium 7	beryllium 9		rela	name ative atomic m	ass							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
11	12			ativo atomio m	400							13	14	15	16	17	18
Na	Mg											Αl	Si	Р	S	Cl	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
23	24					0.5		0.7				27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium –	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium —	astatine —	radon —
87	88	89–103	104	105	106	107	108	109	110	111	112	204	114	209	116		_
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F1		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
_	-		-	-	_	-	_	-	_	_	· -		-		_		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	-	232	231	238	-	-	-	-	-	_	-	-	-	-	-

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)