

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CHEMISTRY

Paper 3 Theory (Core) SPECIMEN MARK SCHEME 0620/03 For Examination from 2016

1 hour 15 minutes

MAXIMUM MARK: 80

The syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 6 printed pages.

mark scheme abbreviations

• ?	separates marking points
1	alternative responses for the same marking point
not	do not allow
allow	accept the response
ecf	error carried forward
avp	any valid point
ora	or reverse argument
owtte	or words to that effect
underline	actual word given must be used by candidate (grammatical variants excepted)
()	the word / phrase in brackets is not required but sets the context
max	indicates the maximum number of marks
Any [number] from	accept the [number] of valid responses
note:	additional marking guidance

1	 (a) diamond: covalent; giant structure / macromolecule; chlorine: any two of: molecule; covalent; 			
		diat	omic;	[4]
	(b)	C ₆ C	Cl_{12}	[1]
	(c)	(i)	green / yellow-green / light green	[1]
		(ii)	value between 2.5–4(.0) (g per dm^3) (actual = 3.12)	[1]
		(iii)	increases	[1]
	(d)	(i)	potassium bromide not: potassium bromine	[1]
			iodine not: iodide	[1]
		(ii)	chlorine is <u>more</u> reactive than bromine / ora not: chloride is more reactive than bromide	[1]
	(e)	ioni	ubility in water: c compounds are soluble and molecular compounds are not soluble e: both needed for mark	[1]
		ioni anc	ctrical conductivity: c compounds conduct electricity <u>when molten</u> / <u>in</u> (aqueous) <u>solution</u> I molecular compounds do not e: both needed for mark	[1]
2	(a)	Br ₂		[1]
	(b)	Any • •	 three of: bromine evaporates / liquid evaporates; more energetic particles change from liquid to vapour or gas; diffusion; random movement of particles / particles move everywhere / <u>air</u> and <u>bromine</u> par are moving; (bromine and air) particles get mixed up / collision of <u>bromine</u> and <u>air</u> particles; 	[3] ticles
			allow: molecules in place of particles	

3	(a)	Ε/	nitrogen (di)oxide / NO ₂	[1]	
	(b)	B /	potassium nitrate / KNO ₃	[1]	
	(c)	A /	ammonia / NH ₃	[1]	
	(d)	Е/	nitrogen (di)oxide / NO ₂	[1]	
	(e)	C /	NI_3 / nitrogen (tri)iodide	[1]	
	(f)	B /	potassium nitrate / KNO ₃	[1]	
4	(a)		cium oxide w: CaO	[1]	
	(b)) thermal decomposition			
	(c)	carbon dioxide has been removed from the limestone / it comes from the limestone / carl dioxide is a product			
	(d)	 neutralising acidic soils / treating acidic lakes / flue gas desulfurisation allow: any suitable use 			
	(e)	tem	perature of Bunsen / distance of Bunsen from the tube / mass of carbonate used / owtt	e [1]	
	(f)	(i)	calcium carbonate	[1]	
		(ii)	27 (cm ³)	[1]	
		(iii)	calcium faster than strontium which is faster than barium / idea of trend down the group; correct trend, i.e. less rapid reaction the further down the group / ora;	[1] [1]	
	(g)	bub dio:	l acid to carbonate; bble gas or carbon dioxide (evolved) through limewater / test gas or carbon xide with limewater; ewater goes milky or cloudy;	[1] [1] [1]	

5	(a)	Any three of: high melting / boiling point; high density; form <u>coloured compounds</u> or have <u>coloured ions;</u> form ions of more than one charge / variable valency / variable oxidation state; allow: form complex ions; hard / hardness; catalysts; [3		
	(b)	(i)	different number of neutrons / different nucleon number	[1]
		(ii)	31	[1]
		(iii)	23	[1]
	(c)	c) suitable method, e.g. coating with paint / zinc / unreactive metal / plastic / oil / galvanising / sacrificial protection; suitable reason, e.g. stops air / water reaching surface; note: reason must be consequential to the method chosen		
	(d)	Any two of: recycling promotes sustainable development / owtte; uses <u>less energy</u> than extraction; preserves limited <u>natural resources;</u>		
		correct reference to cost; reference to landfill;		
	(e)		O ₃ / iron oxide; ses oxygen / gains electrons / iron decreases oxidation number;	[1] [1]
	(f)	(i)	incomplete combustion / insufficient or limited or not enough oxygen	[1]
		(ii)	toxic / suffocates you / stops red blood cells carrying oxygen / binds with hemoglobi place of oxygen	in in [1]
6	(a)	dec	<u>ak down</u> (of substance / electrolyte) by <u>electricity</u> / <u>splitting</u> up of substance by <u>electric</u> composition by <u>electricity</u> w: current / voltage for electricity	<u>;ity</u> / [1]
	(b)	o) anode		
	(c)	-	Irogen ow: H ₂	[1]
	(d)	pla [:] ine	tinum; rt;	[1] [1]

			0	
	(e)	(i)	2,8,7 as shown in an electron shell diagram	[1]
		(ii)	pair of electrons between two chlorine atoms; rest of electrons correct;	[1] [1]
		(iii)	(damp) litmus (paper) / Universal indicator (paper); allow: indicator paper / pH paper	[1]
			bleaches / goes white / goes red then bleaches;	[1]
	(f)	(i)	calcium chloride + water (1 mark each) not: calcium chlorine	[2]
		(ii)	2 on left; H ₂ on right; not: 2H	[1] [1]
7	(a)	(i)	78 (%) allow: 78–80	[1]
		(ii)	Any two of: carbon dioxide; argon; neon; xenon; helium; radon; water; not: hydrogen	[2]
	(b)	(i)	decreases / gets less / gets lower / gets used up	[1]
		(ii)	increases / gets more / greater	[1]
	(c)	any	suitable use e.g. electrical conductor / electrical wiring / saucepans	[1]
8	(a)	(i)	(group of) molecules with similar boiling points / (group of) molecules with similar rel molecular masses / molecules with limited range of boiling points / molecules with lim range of molecular masses / molecules coming off at the same place in the fractional column / owtte	nited
		(ii)	$C_{10}H_{22}$ allow: reasonable mixtures, e.g. $C_7H_{16} + C_3H_6$	[1]
	(b)		refinery gas: (fuel) for heating / (fuel) for cars / (fuel) for cooking; gasoline: (fuel) for cars / mowers etc.;	
	(c)		aturated: contains double bonds / contains C=C bonds; Irocarbon: containing carbon and hydrogen <u>only;</u>	[1] [1]
	(d)	(i)	1st box down ticked (catalytic addition of steam)	[1]
		(ii)	correct structure of ethanol; bond between O-H;	[1] [1]
	(e)		nomers; ymers;	[1] [1]