

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/03

Paper 3 Theory (Core)

SPECIMEN PAPER

For Examination from 2016

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

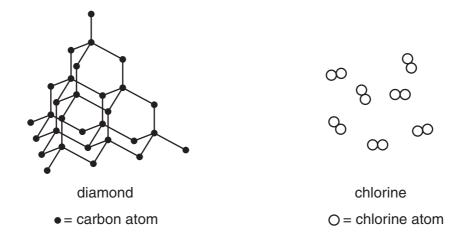
DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 16.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

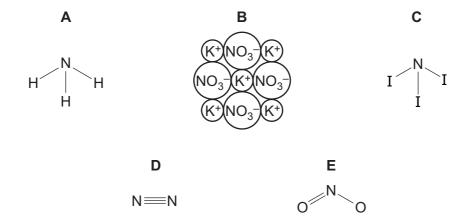
1 The structures of diamond and chlorine are shown below.

(a) Describe the structure of these two substances. Use the list of words to help you.

CO	valent	diatomic	giant	macromolecule	molecule	structure	
diamon	ıd						
chlorine							
							[1]

(b) The structure of a compound containing carbon and chlorine is shown below.

What is the molecular formula of this compound?

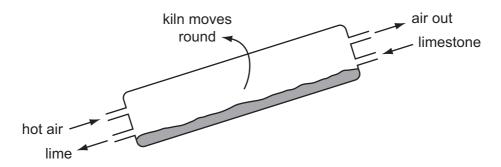

_____[1

(c)	Chl	orine is	a halogen.							
	(i)	State t	the colour o	f chlorine.						
								[1]		
	The	e table s	shows some	properties of the h	nalogens.					
			element	boiling point/°C	density in liquid state/g per cm ³	colour				
			fluorine	-188	1.51	yellow				
			chlorine	-35	1.56					
			bromine	- 7		red-brown				
			iodine	+114	4.93	grey-black				
	Use	e the inf	formation in	the table to answe	r the following ques	stions.				
	/::\	Drodio	ot the density	, of liquid broming						
	(ii)	Fieulo	t the density	y of liquid bromine.				- 4 -		
								[1]		
	(iii)	Descri	ibe the trend	d in boiling point of	the halogens down	the group.				
								[1]		
(d)	(i)	Comp	lete the wor	d equation for the r	eaction of bromine	with aqueous	notassium iodio	le		
(α)	(')	-		•		with aqueous	potassiam louic	10.		
		DIOIIII	ie + potassi	um iodide →	+	•••••				
								[2]		
	(ii)	Sugge	est why bron	nine does not react	: with aqueous pota	ssium chloride	Э.			
								[1]		
(e)	Pot	assium	chloride is :	an ionic substance	but iodine is a mole	ecular suhstar	nce			
(0)				d molecular substa		oddiai odbolai	100.			
	solu	ubility ir	water?							
	eled									
			-					[2]		

2	Bro	Bromine is an element in Group VII of the Periodic Table.						
	(a)	State the formula fo	r a molecule of	bromine.				
						[1]		
	(b)		ed-brown fumes	were seen just	in the bottom of a sealed g above the liquid surface. Af nout the gas jar.			
			air liquid bromine					
		start	aft	er 2 minutes	after 1 hour			
		Use the kinetic parti	icle model of ma	itter to explain th	ese observations.			
						[3]		

[Total: 4]

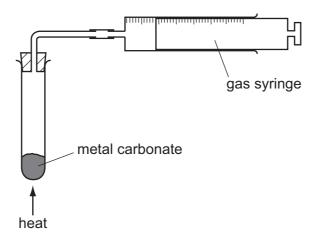
3 The structures of some substances containing nitrogen are shown below.


Answer the following questions by choosing from the structures $\bf A$, $\bf B$, $\bf C$, $\bf D$ or $\bf E$. You can use each structure once, more than once or not at all.

Which structure represents

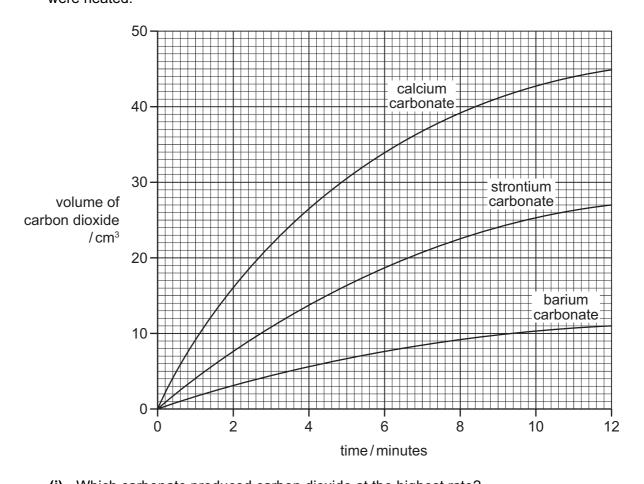
(a)	an acidic oxide,	[1]
(b)	an ionic structure,	[1]
(c)	a gas which turns damp red litmus paper blue,	[1]
(d)	a compound which is formed under conditions of high temperature and pressure in car engines,	[1]
(e)	a molecule containing halogen atoms,	[1]
(f)	a salt?	[1]

[Total: 6]


4 The diagram shows a rotary lime kiln used to make lime from limestone. Limestone is fed in at the top of the kiln and lime comes out at the bottom.

(a) State the chemical name for	for lime?
---------------------------------	-----------

		[1]
(b)	State the name of the type of chemical reaction that takes place in the kiln.	
		[1]
(c)	Suggest why the air coming out of the kiln has a greater percentage of carbon dioxide t the air entering the kiln.	han
		[1]
(d)	State one use for lime.	


(e) A student compared the rates of reaction of three metal carbonates. She measured the volume of gas released using the apparatus shown.

State **one** thing that must be kept constant if the rates of the three reactions are to be compared in a fair way.

[1]

(f) The graph shows the volume of carbon dioxide released when the three metal carbonates were heated.

which carbonate produced carbon dioxide at the highest rate?
[1]
) What volume of carbon dioxide was produced by strontium carbonate in twelve minutes?
[1]
) How do the rates of the reactions of these three metal carbonates relate to the position of calcium, strontium and barium in the Periodic Table?
[2]
[2]

9)	present in calcium carbonate.
	21

[Total: 12]

Iror	n is a transition element.	
(a)	State three properties of transition elements which are not shown by the Group I element	is.
	1	
	2	
	3	
/b\	The example for two jectones of iron are shown below	
(D)	The symbols for two isotopes of iron are shown below.	
	⁵⁴ ₂₆ Fe ⁵⁷ ₂₆ Fe	
	(i) How do these two isotopes differ in their atomic structure?	
		[1]
	(ii) Determine the number of neutrons present in one atom of the isotope $^{57}_{26}$ Fe.	
		[1]
	(iii) Determine the number of electrons in one Fe ³⁺ ion?	
		[1]
(c)	Pure iron rusts very easily.	
	Describe and explain one method of preventing rusting.	
	method	
	explain why this method works	
		[2]
(d)	Iron can be recycled.	
	Explain two advantages of recycling metals.	
		[2]

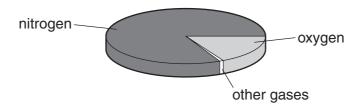
(e) In the blast furnace, iron(III) oxide reacts with carbon monoxide.


$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

Which substance gets reduced in this reaction?
Explain your answer.

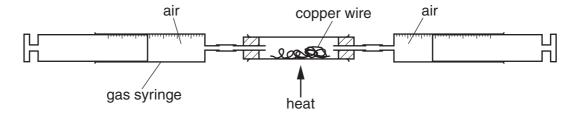
	sub	estance	
	ехр	olanation	
			[2]
(f)	(i)	Carbon monoxide is a pollutant gas produced in motor car engines. State why carbon monoxide is formed.	
			[1]
	(ii)	State one harmful effect of carbon monoxide.	
			[1]

[Total: 14]


6 Concentrated hydrochloric acid can be electrolysed using the apparatus shown.

(a)	Define the term ele	ectrolysis?					
					•••••		[1]
(b)	What is the name of Put a ring around to	-		?			
	anion	anode	cathode	cation	electroly	te	[1]
							ניו
(c)	State the name of	the gas given o	ff at the negativ	ve electrode.			
							[1]
(d)	Complete the follow	wing sentence a	about electrolys	sis using wor	ds from the	list.	
	inert	magnesium	platinum	reacti	ve so	lid	
	Electrodes made	of graphite o	r	are	generally	used in	electrolysis
	because they are .						[2]

(e)	Wh	en concentrated hydrochloric acid is electrolysed, chlorine is released.	
	(i)	Draw the shells and the electronic structure in an atom of chlorine.	
	(ii)	Draw the electronic structure of a chlorine molecule. Show only the outer electron shells.	[1]
			[2]
	(iii)	Describe a test for chlorine.	
		test	
		result	[2]
(f)	Нус	drochloric acid reacts with the base calcium hydroxide.	
	(i)	Complete the word equation for this reaction.	
		hydrochloric acid + calcium hydroxide \rightarrow +	
			[2]
	(ii)	Hydrochloric acid also reacts with zinc. Complete the symbol equation for this reaction.	
		$Zn + \dots HCl \rightarrow ZnCl_2 + \dots$	[2]
		[Total:	14]
			-


7 The pie chart shows the composition of air.

(a) (i) What is the percentage of nitrogen in the air	(a)	(i)	What is the	percentage of	f nitrogen	in the ai
---	-----	-----	-------------	---------------	------------	-----------

		[1]
(ii)	Apart from nitrogen and oxygen, state the names of two gases present in unpolluted	air.
	and	[2]

(b) The percentage of oxygen in air can be found using the apparatus shown below.

Air is passed backwards and forwards over the heated copper using the syringes. The copper reacts with oxygen in the air.

As the experiment proceeds, suggest what happens to

(i)	the total volume of air in the gas syringes,	

[1]	1
 L .	•

(ii) the mass of the wire in the tube.

T 4	п
17	1
ι.	л
-	-

(c) State one use of copper.

[Total: 6]

8

Eth	ene,	C ₂ H ₄ , is manufactured by cracking petroleum fractions.	
(a)	(i)	What do you understand by the term fraction?	
			•••
			[1]
	(ii)	Complete the symbol equation for the manufacture of ethene from dodecane, $C_{12}H_{26}$.	
		$C_{12}H_{26} \rightarrow C_2H_4 + \dots$	[1]
(b)		o fractions obtained from the distillation of petroleum are refinery gas and gasoline. te one use of each of these fractions.	
	refir	nery gas	•••
	gas	soline [:	[2]
(c)		ene is an unsaturated hydrocarbon. at do you understand by the following terms?	
	uns	saturated	•••
	hyd	Irocarbon [[2]
(d)	Eth	ene is used to make ethanol.	
	(i)	Which of these reactions is used to make ethanol from ethene? Tick one box.	
		catalytic addition of steam	
		fermentation	
		oxidation using oxygen	
		reduction using hydrogen [[1]

	(ii)	Draw the s	tructure of ethan	ol, showing all at	oms and bonds.		
							[0]
							[2]
(e)	Cor	mplete the fo	to make poly(etl ollowing sentenc n the list below.	nene). es about this rea	ction.		
	ad	ditions	carbohydrate	s catalysts	monomers	polymers	
	The	e ethene mo	lecules which joi	n to form poly(etl	nene) are the		
	The	e poly(ethen	e) molecules for	med are			[2]
						[Total: 11]

BLANK PAGE

III/	2	He	helium	4	10	Ne	neon	20	18	Ā	argon	40	36	궃	krypton	84	54	×e	xenon	131	98	各	radon	j				
II/					6	L	fluorine	19	11	ľ	chlorine	35.5	35	Ŗ	bromine	80	53	П	iodine	127	98	Ą	astatine	1				
N					8	0	oxygen	16	16	S	sulfur	32	34	Se	selenium	79	52	Чe	tellurium	128	84	Ъо	polonium	1	116	۲	livermorium	1
>					2	z	nitrogen	14	15	۵	phosphorus	31	33	As	arsenic	75	51	gs	antimony	122	83	Bi	bismuth	209				
<u> </u>					9	ပ	carbon	12	14	:S	silicon	28	32	Ge	germanium	73	20	Sn	tin	117	82	Pb	lead	207	114	14	flerovium	Ĭ,
≡					2	В	poron	11	13	Ν	aluminium	27	31	Ga	gallium	70	49	In	molpui	115	81	<i>1</i> L	thallium	204				
													30	Zu	zinc	65	48	ပ္ပ	cadmium	112	80	Ε̈́	mercury	201	112	ပ်	copernicium	J
													29	Cn	copper	64	47	Ag	silver	108	6/	Au	plog	197	111	Rg	_	
Group													28	ī	nickel	59	46	Pq	palladium	106	78	చ	platinum	195	110	Ds	darmstadtium roentgenium	1
5													27	ပိ	cobalt	59	45	Rh	rhodium	103	2.2	ŀ	iridium	192	109	¥	meitnerium	I
	1	I	hydrogen	-									26	Fe	iron	99	4	Ru	ruthenium	101	9/	SO	osmium	190	108	Hs	hassium	1
					•								25	Mn	manganese	55	43	٦ _C	technetium	ij	75	Re	rhenium	186	107	Bh	bohrium	j
					J.	loc		lass					24	ပ်	chromium	52	42	Mo	molybdenum	96	74	≥	tungsten	184	106	Sg	seaborgium	1
				Key	atomic number	atomic symbo	name	relative atomic mass					23	>	vanadium	51	41	g				Та	tantalum	181	105	op O	dubnium	1
					atc	atoı		relativ					22	F	titanium	48	40	Zr	zirconium	91	72	士	hafnium	178	104	峜	rutherfordium	1
													21	Sc	scandium	45	39	>	yttrinm	88	57-71	lanthanoids			89-103	actinoids	_	
=					4	Be	beryllium	6	12	Mg	magnesium	24	20	Ca	calcium	40	38	ഗ്	strontium	88	99	Ва	barium	137	88	Ra	radium	1
-					3	:	lithium	7	11	Na			19	¥	potassium	39	37	R _b	rubidium	82	25	Cs	caesium	133	87	<u>ٿ</u>	francium	J

1.1	Γn	lutetium	175	103	۲	lawrencium	ľ.	
0/	Yb	yfferbium	173	102	No		ľ	
69	T	thulium	169	101	Md	mendelevium	ľ	
89	щ	erbinm	167	100	FB	fermium	Ĺ	
29	웃	holmium	165	66	Es	einsteinium	ľ	
99	۵	dysprosium	163	86	ರ	californium	Û	
<u> </u>	Тр	terbium	159	26	K	berkelium	E	
7 9	Р	gadolinium	157	96	Cm		ľ	
63	En	europium	152	96	Am	americium	Ĺ	
62	Sm	samarium	150	94	Pu	plutonium	I.	
61	Pm	promethium	Ī	93	Np	neptunium	Ē	
09	PN				⊃	uranium	238	
69	Ą	praseodymium	141	91	Pa	protactinium	231	
89	Se		140	06	T	thorium	232	
25	La	lanthanum	139	88	Ac	actinium	Ü	
	lanthanoids				actinoids			

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.