MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0610 BIOLOGY

0610/32
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

General notes

Symbols used in mark scheme and guidance notes.
/ separates alternatives for a marking point
; separates points for the award of a mark
A accept - as a correct response
$\mathbf{R} \quad$ reject - this is marked with a cross and any following correct statements do not gain any marks

I ignore/irrelevant/inadequate - this response gains no mark, but any following correct answers can gain marks.
() the word/phrase in brackets is not required to gain marks but sets context of response for credit. e.g. (waxy) cuticle. Waxy not needed but if it was described as a cellulose cuticle then no mark.

Small underlined words - this word only/must be spelled correctly
ORA or reverse argument/answer
ref./refs. answer makes appropriate reference to
AVP additional valid point (e.g. in comments)
AW alternative words of equivalent meaning
MP marking point (number)
ecf error carried forward

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	$\mathbf{0 6 1 0}$	32

Question	Expected Answers		Marks	Additional Guidance
1 (a)	broad leaves / Ranunculus does not have narrow leaves / AW ; branched veins / not parallel veins; flower parts, in $5 \mathrm{~s} / \mathrm{not}$ in $3 \mathrm{~s} ; \mathbf{R}$ 'flowers in fives'		[max 2]	A wide / large surface area A net(work) of veins / reticulate I two cotyledons
(b)	1 2 3 4 5 6 7 8 9	(cells of \mathbf{W} were) in, the winter / cold / low light / short days / AW ; I refs. to water starch, has been used / converted to glucose or sugar / broken down ; to provide energy ; R 'produce' in respiration ; to keep the, plant / cells, alive ; I for growth, etc. root has become a source (not a sink) ; when there has been, no / few, leaves ; so there has been, no / little / less, photosynthesis ; ref. to, light / temperature / cold, as limiting factor(s) ;	[max 3]	assume answers refer to W unless told otherwise - accept ORA for S 1 (cells of \mathbf{S} were) in summer / warm / high light / AW ; I refs. to water 2 starch has been, stored / produced ; 8 result of (more) photosynthesis ; 6 root is a sink (not a source) ; 7 many leaves ;
(c)	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	sucrose / sugar, transported / translocated; A travels / in phloem glucose / monosaccharide ; joined together (by chemical bonds) ; R if refers to joining sucrose condensation reaction / described ; glucose added to growing chain / AW ; (starch is a) long / chain, molecule ; A is a polysaccharide enzyme provides active site for reaction; enzyme, catalyses / speeds up, the reaction ; ref. to lock and key (model) ;	[max 3]	if given breakdown of starch award MP6 to 9 only A 'join together to make maltose' A polymer / polymerisation A enzyme(s) is/are (biological) catalyst(s)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

Question	Expected Answers		Marks	Additional Guidance
(d)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	increase in (kinetic) energy ; more, collisions / AW ; between, enzyme / active site, and, substrate / AW ; ref. to optimum temperature / works best at $\approx 30^{\circ} \mathrm{C}$; denatured, at high temperature / above $30^{\circ} \mathrm{C}$ / above optimum ;	[max 2]	I particles, movement R 'destroyed' / 'killed' / 'damaged'
[Total: 10]				

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	$\mathbf{0 6 1 0}$	$\mathbf{3 2}$

Question	Expected Answers		Marks	Additional Guidance
2 (a)	removal from the, body / organism ; R 'from cell' / 'excreted from body' poisons / toxins ; waste products of, metabolism / respiration / deamination / chemical reactions in cells or in the body; substances in excess (of requirements) / AW ;		[max 3]	A 'substances that cause harm' / 'harmful' toxic waste products of metabolism / AW = 2 marks I routes from body
(b) (i)	too large to go through membrane / pores in membrane too small ;		[1]	I semi-permeable / AW
(ii)	dialysing solution / dialysate, contains glucose; glucose / sugar, diffuses / moves ; (until blood is) at, correct / normal, concentration ; A amount / level		[max 2]	I refs. to insulin / glucagon, etc. A dialysate has, correct / normal, concentration R 'machine has'
(c) (i)	9 ;		[1]	
(ii)	$(240-40=) 200 \mathrm{mg} \mathrm{per} \mathrm{dm}^{3}$;		[1]	must have units - A $200 \mathrm{mg} / \mathrm{dm}^{3}$ or $\mathrm{mg} \mathrm{dm}^{-3}$
(iii)	$\begin{array}{\|l\|l} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ & \end{array}$	decreases during, dialysis / treatment / 'time on machine' ; increases, over next day / until next dialysis / after dialysis ; maximum concentration(s) decreases (over time); minimum concentration(s) (after dialysis) decreases (over time) ; difference between max and min decreases; increase after dialysis is less steep after, day 9 or 10 / treatment 5 ; any comparative data quote giving days and urea concentration(s); AVP ;	[max 3]	do not allow 'urea conc decreases over 17 days' allow fluctuates if MP1 or MP2 not given MP7 A decreases by, 200 mg per $\mathrm{dm}^{3} / 83 \%$, over 17 days A 'at first' and 'at end' for days look carefully at how 4 s and 7 s are written

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	$\mathbf{0 6 1 0}$	32

Question	Expected Answers		Marks	Additional Guidance
3 (a)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} ; \quad 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$;		[2]	I word equation I energy / ATP \mathbf{R} if 2 is not included for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ \mathbf{R} glucose if oxygen included on left of arrow \mathbf{R} if water given on either side
(b)	$\begin{aligned} & 2.0 / 2 ; \\ & 18 ; \\ & 36 ; \end{aligned}$		[3]	A ecf for volume of air per minute $=$ multiple of first two figures in answer
(c)	1 2 3 4 5 6 7 8 9 10 11 12 13 14	descriptive comment on difference between Fig. 3.1 and 3.2 ; A data quote for any one of the results shown in Table 3.1 muscle ; respires faster ; \mathbf{R} breathes faster (as this is for MP1) idea that more, energy / ATP, released / needed ; aerobic respiration ; idea that requires more oxygen ; A ref to more oxygenated blood idea that remove more carbon dioxide ; change to breathing maintains pH of blood; oxygen concentration ; carbon dioxide concentration; prevents (much) anaerobic respiration occurring ; prevents build up of, lactic acid / lactate ; R removes prevents oxygen debt ; \mathbf{R} repays AVP ; e.g. ref. to homeostasis, contraction of muscle	[max 5]	breathing rate, volume of air, ventilation rate e.g. breathe, fast / faster, deeper \mathbf{R} heavier A more respiration NOT more glucose \mathbf{R} 'energy produced’ MP8 - MP10 must have idea of maintaining near constant MP11-13 R refs. to there being an oxygen debt and paying off oxygen debt as question is about during exercise not afterwards, other points especially MP1 to 7 can still be awarded if answer contains refs to oxygen debt unless answer says 'after exercise'

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

Question	Expected Answers		Marks	Additional Guidance
(d)	1 2 3 4 5 6 7 8 9 10	mark both parts together to max 5 - some points may be awarded in either section more / faster , respiration in muscles ; pulse rate pulse rate increases ; idea that more / faster, blood transport to, muscles / lungs ; idea that muscle requires more oxygen ; remove, carbon dioxide from muscles; remove, lactic acid / lactate, from muscles; remove heat from muscles ; concentration of glucose concentration of blood glucose, increases / stays the same ; glucose required for, energy / respiration ; for muscle, activity / contraction / to work ;	[max 5]	A heart pumps faster R 'to body' I - (strenuous) exercise
[Total: 15]				

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	$\mathbf{0 6 1 0}$	32

Question	Expected Answers		Marks	Additional Guidance
4 (a)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	enter, blood / plasma / lymph ; infect / enter, white blood cell / lymphocyte / phagocyte / AW ; infect, brain / liver / lungs / skin / reproductive system / kidney / gut ; cannot reproduce ; may be transmitted to another person ; e.g. of method of transmission ; \mathbf{R} excreted, die	[max 2]	A ref. to antibodies combining with virus A 'attack' / 'invade' white blood cells A 'attack' / 'invade' / enter MP6 A sexual intercourse / in blood / in breast milk / across placenta / needle stab
(b)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	infects / destroys / kills, phagocytes; destroys / kills / disables, lymphocytes ; fewer antibodies produced; ref. to, T lymphocytes / T cells ; slow / no / weaker, immune response / response by immune system ; idea of increased susceptibility to disease / infection / (named)pathogens ; A viruses / bacteria cancers ; fungal infections / TB / pneumonia / named disease linked with HIV ; R common cold develop AIDS ; AVP ;	[max 3]	A no phagocytosis A fewer lymphocytes \mathbf{R} 'attacks' / 'damages' A 'immune system not working' A suppresses / damages, immune system A 'can't fight disease' MP3-8 A answers that give role(s) of immune system followed by 'this doesn't happen'
(c) (i)		stance) changes / modifies / affects, (chemical) reactions in body / how the body works;	[1]	I category of drug, medicine, specific effects of named drug, etc.
(ii)		iotics if ‘antibodies’ written rather than antibiotic - mark to 1 not effective against viruses / only effective against bacteria ; that nothing for them to act on ; e.g. cell wall / protein hesis / cellular structure / capsule	[2]	I viruses inside cells A do not work against viruses A ORA R 'life processes'
			[Total: 8]	

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& \multicolumn{2}{|l|}{Expected Answers} \& Marks \& Additional Guidance \\
\hline 5 (a) (i) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
(oxygen concentration) decreases, steeply / AW ; \\
zero / 0\%, concentration ; A none / no oxygen \\
more gradual / AW, increase ; \\
increase / returns, to, original / normal / maximum concentration ; \\
A 100\% \\
comparative data quote ; A ref. to at least two sampling stations
\end{tabular}} \& [max 4] \& \begin{tabular}{l}
A rapid decrease / over short distance \\
A slow increase / over longer distance \\
A 'at first' for \(\mathbf{A}\), 'at end' for \(\mathbf{G}\)
\end{tabular} \\
\hline (ii) \& \multicolumn{2}{|l|}{stonefly (nymph) ;} \& [1] \& \\
\hline (iii) \& \multicolumn{2}{|l|}{rat-tailed maggot and tubifex (worm) ; I midge larva} \& [1] \& A maggot and worm \\
\hline (iv) \& 1

2 \& \begin{tabular}{l}
number, of species / invertebrates, decreases as oxygen concentration decreases / ora ; A correct ref. to stations A to G

some cannot survive where there is low oxygen / ORA ;

bacteria use oxygen (to decompose sewage) ;

some invertebrates can only respire aerobically / AW ;

some (named) invertebrates, can respire anaerobically (as well) ;

ref. to change in other named condition of river ;

e.g. temperature / pH / cloudiness / flow rate / river bed / AW less food;

presence of, poisons / toxins (from sewage) ; migrate / move, away ;

AVP; e.g. other changes such as increase in aquatic plants / better habitat

 \& [max 3] \&

MP1 number of different species is in the question, but make sure it is implied in answer

MP 2 A ora e.g. most/some survive only where there is (lots of) oxygen / few can survive where there is little oxygen
\end{tabular}

\hline
\end{tabular}

Page 11	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& \multicolumn{2}{|l|}{Expected Answers} \& Marks \& Additional Guidance \\
\hline (b) \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 3 \\
\& 4 \\
\& 5 \\
\& 6 \\
\& 7 \\
\& 7
\end{aligned}
\] \& \begin{tabular}{l}
enzymes / named enzyme; \\
secrete / release / pass out of cells / onto food / \\
extracellular / AW ; \\
digest / breakdown, large / complex / insoluble, (molecules) \\
to, small / soluble / simple, (molecules) ; \\
cellulose \(\rightarrow\) sugar / glucose; \\
starch \(\rightarrow\) sugar / maltose / glucose; I further change, e.g. to carbon dioxide / water \\
protein \(\rightarrow\) polypeptides / peptides / amino acids; \\
I further changes e.g. to ammonia, nitrite, etc. \\
fats \(\rightarrow\) fatty acids (and glycerol); \\
ref. to respiration;
\end{tabular} \& [max 4] \& \begin{tabular}{l}
\(\mathbf{R}\) bacteria are enzymes \\
A smaller , simpler \\
A polysaccharides \(\rightarrow\) monosaccharides if name not given
\end{tabular} \\
\hline (c) \& 1
2
3

4
4

6 \& \begin{tabular}{l}
mark to max 2 for each

reeds (bed), absorb / take up / use, nitrate (ions) ; I nodules diffusion / active transport ;

use nitrate to make, amino acids / proteins / chlorophyll / enzyme(s) ;

denitrifying bacteria / denitrification; nitrate ions converted to nitrogen (gas) ; ref. to anaerobic conditions in the reed bed ;

 \& [max 3] \&

\mathbf{R} if nitrogen absorbed

I growth

R MP4 if linked to incorrect change to N A even if MP4 incorrect
\end{tabular}

\hline
\end{tabular}

Page 12	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

Question	Expected Answers		Marks	Additional Guidance
(d)	$\mathbf{1}$	(methane is) greenhouse gas ; A contributes to the greenhouse effect traps / absorbs, heat / infra red (IR) radiation ; radiated back towards the Earth's surface / heat kept near surface / prevents heat escaping (to space) / AW; enhanced greenhouse effect ; global warming / warming of atmosphere / increase in Earth temperature ; any consequence ; e.g. rise in sea levels, melting of ice caps, droughts, flooding, desertification, erosion, etc.	methane contributes to enhanced greenhouse effect (max 3]	
	[Total: 19]			

Page 13	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

Question	Expected Answers	Marks	Additional Guidance
6 (a)	pollen transferred from, anther / stamen, to stigma ; within same flower / between flowers on same plant; \mathbf{R} if only 'same plant'	[2]	\mathbf{R} complete answers given in context of fertilisation R 'single parent'
(b)	$\begin{aligned} & \text { cross } 1 \\ & I^{R} I^{R} \times I^{W} I^{W} \\ & I^{R}+I^{w} \\ & I^{R} I^{w} ; \\ & \text { cross } 2 \\ & I^{R} I^{w} \times I^{R} I^{w} \\ & I^{R}, I^{w}+I^{R}, I^{w} ; \\ & I^{R} I^{R}, I^{R} I^{w},\left(I^{R} I^{w}\right), I^{w} I^{w} ; \end{aligned}$ 1 red : 2 pink : 1 white; A 25% red : 50% pink : 25% white A multiples, e.g. 2 red: 4 pink : 2 white R if two different ratios given	[4]	A other notation, e.g. R and r or mixture, e.g. I^{R} and W. R ${ }^{R R}$, etc. cross 11 mark for parental genotypes, gametes and offspring all correct. Any mistake and no mark awarded. cross 2 1 mark for cross genotypes and gametes all correct. Any mistake and no mark awarded. 1 mark for giving all three genotypes (on answer line or in the white space e.g. in Punnett square). If correct on answer line ignore any errors in working. 1 mark for ratio of offspring phenotypes and colours R if no colours given
(c)	$\begin{aligned} & I^{\mathrm{R}} I^{w} \times I^{w} I^{w} \\ & I^{\mathrm{R}}, \mathrm{I}^{\mathrm{w}}+\mathrm{I}^{\mathrm{w}} ; \\ & \mathrm{I}^{\mathrm{R}} I^{w}, I^{\mathrm{W}} \mathrm{I}^{w} ; \\ & 1 \text { (pink) }: 1 \text { (white); } \\ & \mathrm{R} \text { if two different ratios given } \end{aligned}$	[3]	1 mark for parental genotypes and gametes all correct. Any mistake and no mark awarded. 1 mark for offspring genotypes 1 mark for ratio (colours not necessary) A if no colours given

Page 14	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0610	32

Question	Expected Answers		Marks	Additional Guidance
(d)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \\ & 7 \\ & \hline 8 \\ & 9 \\ & 10 \end{aligned}$	ref. to meiosis; mutation can occur in meiosis ; (gives) variation / diversity; R 'varied species (plural)' ref. to, alleles / genes / DNA, from different, plants / parents ; allows mutations to be, expressed / AW ; allows adaptation to, new conditions / changed environment / AW ; (new species) can evolve / allows natural selection to occur ; seeds are dispersed; \mathbf{R} dispersed unqualified, \mathbf{R} pollen dispersal can colonise new areas / AW ; less competition (with parent plant / among offspring) ;	[max 4]	\mathbf{R} sexual reproduction allows mutations to occur A may allow resistance to disease A 'suited to' / survive / AW for adapted R 'passed on by natural selection' \mathbf{R} 'new species are made' A 'go to new areas' or 'spread to new areas' competition is in context of seed dispersal not pollen dispersal R ‘multiply quicker’
[Total: 13]				

