### **Location Entry Codes**

www.tiremepapers.com As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

UNIVERSITY of

International Exa

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers. Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

#### Mark Scheme **Question Paper** Principal Examiner's Report Introduction Introduction Introduction First variant Question Paper First variant Mark Scheme First variant Principal Examiner's Report Second variant Question Paper Second variant Mark Scheme Second variant Principal Examiner's Report

#### Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

## MARK SCHEME for the October/November 2008 question paper

# 0580 and 0581 MATHEMATICS

0580/21 and 0581/21 Paper 21 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations First variant Mark Scheme

| Page 2 | Mark Scheme                   | Syllabus  | Paper |
|--------|-------------------------------|-----------|-------|
|        | IGCSE – October/November 2008 | 0580/0581 | 21    |

### Abbreviations

| cao        | correct answer only                           |  |  |  |  |
|------------|-----------------------------------------------|--|--|--|--|
| <b>C</b> 1 | <u>, , , , , , , , , , , , , , , , , , , </u> |  |  |  |  |

follow through after an error ft or equivalent

oe Special Case SC

without wrong working www

| (b) 0       1       Allow none oe         2 $a = 3$ W1 one correct $b = 4$ 2       If no marks scored M1 (3 × 2)         3 $1.59(459)$ or $59/37$ or $1\frac{22}{37}$ 2       M1 $\frac{22}{37}$ or $0.5945$ seen         4       (a) $2.67 \times 10^{-2}$ 1       cao – must be correct notation         (b) $0.0267(00)$ 1ft       correct or ft         5       Correct locus       2       M1 arc through D radius BD A1 some indication that the arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| 2 $a=3$<br>b=4       W1 one correct<br>If no marks scored M1 (3 × 2)         3       1.59(459) or 59/37 or $1\frac{22}{37}$ 2       M1 $\frac{22}{37}$ or 0.5945 seen         4       (a)       2.67 × 10 <sup>-2</sup> 1       cao – must be correct notation         (b)       0.0267(00)       1ft       correct or ft         5       Correct locus       2       M1 arc through D radius BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |  |  |
| $b = 4$ 2       If no marks scored M1 (3 × 2)         3       1.59(459) or 59/37 or $1\frac{22}{37}$ 2       M1 $\frac{22}{37}$ or 0.5945 seen         4       (a) $2.67 \times 10^{-2}$ 1       cao – must be correct notation         (b) $0.0267(00)$ 1ft       correct or ft         5       Correct locus       2       M1 arc through D radius BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |  |  |
| 3 $1.59(459)$ or $59/37$ or $1\frac{22}{37}$ 2       M1 $\frac{22}{37}$ or $0.5945$ seen         4       (a) $2.67 \times 10^{-2}$ 1       cao – must be correct notation         (b) $0.0267(00)$ 1ft       correct or ft         5       Correct locus       2       M1 arc through D radius BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |  |  |
| 4       (a) 2.67 × 10 <sup>-2</sup> 1       cao – must be correct notation         (b) 0.0267(00)       1ft       correct or ft         5       Correct locus       2       M1 arc through D radius BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |  |
| 5Correct locus2M1 arc through D radius BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |  |  |
| A1 some indication that the ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rc is from $D$ to $D'$                   |  |  |
| 6 60 W1 one correct Allow 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |  |  |
| 1202or if W0, SC1 the angles add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | up to 180°                               |  |  |
| 7         50.1225 cao         2         M1 6.15 and 8.15 seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |  |  |
| <b>8</b> $x^{2}(a+b)$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |  |  |
| $(\pm) \sqrt{(p^2 + d^2)/(a + b)} = 2$ M1 2 moves completed corres<br>9 (a) $y = 2x - 4$ 2 W1 2x + c or W1 mx - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ectly                                    |  |  |
| 9 (a) $y = 2x - 4$ 2 W1 $2x + c$ or W1 $mx - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |  |  |
| (b) $(2, 0)$ 1ft         For $y = 2x + k$ only, allow $(-k/k)$ 10 $x = 8$ $y = 5$ 3         M1 ×2 and add or ×3 and subtraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |  |  |
| <b>10</b> $x = 8$ $y = 5$ <b>3 M1</b> ×2 and add or ×3 and sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1 ×2 and add or ×3 and subtract         |  |  |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |  |  |
| 11 $\frac{-18}{(2x+3)(x-3)}$ oe 3 W1 denominator correct in a any brackets)<br>M1 $4(x-2) + 2(2x+3) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | answer space (including                  |  |  |
| $\frac{1}{(2x+3)(x-3)}$ oe any brackets)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | any brackets)                            |  |  |
| <b>WI</b> $4(x-3)-2(2x+3)$ <b>AI</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |  |
| <b>12</b> $x > -0.16$ or $-0.16 < x$ <b>3 M1</b> 2 moves completed correction of the second s |                                          |  |  |
| or $x > -\frac{4}{1-x}$ M1 2 more moves complete<br>Final mark must be given for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                        |  |  |
| Final mark must be given for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Final mark must be given for answer line |  |  |
| <b>13</b> 1.25 <b>3 M1</b> $p = k/(q+2)^2$ <b>M</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1 $p = (k/(q+2))^2$                     |  |  |
| $\int \frac{1}{\operatorname{or} p(q+2)^2} = k \qquad A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1 $k^2 = 125$ or                        |  |  |
| <b>A1</b> $k = 125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k = \sqrt{125}$                         |  |  |
| If no marks awarded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |  |  |
| <b>SC1</b> $5: k/25$ in this form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                                        |  |  |
| p: k/100 (colon opti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ional)                                   |  |  |
| or <b>SC1</b> for either                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5 = k/(3+2)^2$ or $5 = k/5^2$           |  |  |
| Allow 5/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Allow 5/4                                |  |  |
| 14(a) 45498 or $4.5498 \times 10^4$ cao2M1 $2.656 \times 10^9 \div 58376$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |  |  |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |  |  |
| (b) 7240 2 M1 $\frac{(a)}{2\pi} = (r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |  |

First variant Mark Scheme

|    | Page 3                     | Mark So                            | chem | e                                                                                         | Syllabus                                          | Paper          |
|----|----------------------------|------------------------------------|------|-------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|
|    | - U * ~                    | IGCSE – October/                   |      |                                                                                           | 0580/0581                                         | 21             |
|    | -                          |                                    |      |                                                                                           |                                                   |                |
| 15 | (a) 0.5 or $\frac{1}{2}$   |                                    | 1 2  | <b>M1</b> cos180                                                                          |                                                   |                |
|    | (b) $-1 \text{ or } -1.($  | ,                                  |      |                                                                                           |                                                   |                |
|    | (c) $\frac{\cos x - 4}{2}$ | oe                                 | 2    | M1 subtracting 4 a<br>e.g. $\frac{x-4}{2}$ or $\frac{y-4}{2}$                             | and then dividing by 2<br>or $\frac{f(x) - 4}{2}$ | 2 seen         |
| 16 | (a) 1000 140               | 00 1960 2744 3842<br>(2740) (3840) | 2    | W1 three correct 3 s                                                                      | of answers or better                              |                |
|    | (b)<br>▲                   |                                    | 2    | P1ft 4 or 5 plots co<br>C1 smooth curve o<br>To half a small squa                         |                                                   | able           |
|    | (c) 3.2 or 3.3             |                                    | 1ft  | If a curve and a line<br>cao or ft from their                                             | are drawn mark the c<br>( <b>b</b> )              | curve          |
| 17 | (a) (i) -3p -              | - 2 <b>q</b>                       | 1    | allow –(3 <b>p</b> + 2 <b>q</b> )                                                         |                                                   |                |
|    | (ii) -3p -                 | + 4 <b>q</b>                       | 1    | allow –(3 <b>p</b> – 4 <b>q</b> )                                                         |                                                   |                |
|    |                            | -4 <b>p</b>                        | 2    | <b>M1 (ii)</b> $-(p + 4q)$ or <b>(ii)</b> $-p - 4q$                                       | $\mathbf{r} BC - AC = BA$                         |                |
| 18 | (b) 8<br>(a) 1.05          |                                    | 1 2  | M1 clear attempt at                                                                       | v_sten/r_sten                                     |                |
| 10 | (b) 3360                   |                                    | 3    | M1 attempting the a<br>W1 $\frac{(140+180) \times 2}{2}$                                  | area under the graph                              |                |
|    | (c) 18.7                   |                                    | 1ft  | May be done by tria (b) / 180 evaluated of                                                | ngles and rectangles                              |                |
| 19 | (a) 53.4                   |                                    | 3    | <b>M1</b> 50/360 × $\pi$ ×12 <sup>2</sup><br><b>M1</b> 50/360 × $\pi$ ×12 <sup>2</sup>    | $^{2} \text{ or } 30/360 \times \pi \times 6^{2}$ |                |
|    | <b>(b)</b> 49.6            |                                    | 3    |                                                                                           | $\times 12$ or $30/360 \times 2 \times$           | $\pi \times 6$ |
| 20 |                            | $00y \ge 720000$                   | 1    | seen                                                                                      |                                                   |                |
|    | <b>(b)</b> $x + y \le 90$  | 0                                  | 1    | W/1 deservice is                                                                          | - 000                                             |                |
|    | (c)<br>900                 |                                    | 4    | W1 drawing $x + y =$<br>W1 drawing $x + 2y$                                               | = 1200                                            |                |
|    | 900<br>600                 |                                    |      | W1 R is below $x +$<br>W1 R is above $x +$<br>The lines must be in<br>Accurate to one sma | 2y = 1200<br>the right place                      |                |
|    |                            | 900 1200                           | 1.0  | Comment C.C. 1                                                                            |                                                   |                |
|    | ( <b>d</b> ) 300           |                                    | 1ft  | Correct or ft from the accuracy $\pm 10$ on the                                           | e lowest y value in R                             |                |
|    |                            |                                    | 70   |                                                                                           | e iowest y value III K                            |                |

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

## MARK SCHEME for the October/November 2008 question paper

# 0580 and 0581 MATHEMATICS

0580/22 and 0581/22 Paper 22 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations Second variant Mark Scheme

| Page 2 | Mark Scheme                   | Syllabus  | Paper |
|--------|-------------------------------|-----------|-------|
|        | IGCSE – October/November 2008 | 0580/0581 | 22    |

### Abbreviations

| cao        | correct answer only |  |  |  |  |
|------------|---------------------|--|--|--|--|
| <b>C</b> 1 | f = 11 =            |  |  |  |  |

follow through after an error ft

oe or equivalent SC

Special Case

without wrong working www

| (b) 0 1 Allow none oe                                                                                                                                     |                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
|                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                           |                                   |  |  |
| b=3 2 If no marks scored M1 (4 × 2)(2                                                                                                                     | × 3) 0e                           |  |  |
|                                                                                                                                                           | M1 $\frac{22}{37}$ or 0.5945 seen |  |  |
| 4 (a) $3.85 \times 10^{-2}$ 1 cao – must be correct notation                                                                                              | cao – must be correct notation    |  |  |
| (b) 0.0385(00) 1ft correct or ft                                                                                                                          |                                   |  |  |
| <b>5</b> Correct locus 2 M1 arc through <i>D</i> radius <i>BD</i>                                                                                         |                                   |  |  |
| A1 some indication that the arc is                                                                                                                        | from $D$ to $D'$                  |  |  |
| 645W1 one correct Allow 45 or 13                                                                                                                          |                                   |  |  |
| 135 2 or if W0, SC1 the angles add up to                                                                                                                  |                                   |  |  |
| 7       15.8025 cao       2       01 ft W0, SC1 the angles add up                                                                                         | 10 180                            |  |  |
|                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                           |                                   |  |  |
| $(\pm) \sqrt{(p^2 + d^2)/(a + b)} = 2  M1 \text{ 2 moves completed correctly} \\ 9  (a)  y = 2x - 6  2  W1  2x + c \text{ or } W1  mx - 6 \\ \end{array}$ | I                                 |  |  |
| 9 (a) $y = 2x - 6$ 2 W1 $2x + c$ or W1 $mx - 6$                                                                                                           |                                   |  |  |
| (b) $(3, 0)$ 1ft       For $y = 2x + k$ only, allow $(-k/2, 0)$ 10 $x = 5$ $y = 2$ 3       M1 × 4, × 3 and add or × 3 and sub-                            | 0)                                |  |  |
| (b) $(3, 0)$ 1ft       For $y = 2x + k$ only, allow $(-k/2, 0)$ 10 $x = 5$ $y = 2$ 3       M1 × 4, ×3 and add or ×3 and sub-                              | otract                            |  |  |
| A1                                                                                                                                                        |                                   |  |  |
| 11-173W1denominator correct in answ                                                                                                                       | ver space (including              |  |  |
| 11 $\frac{-17}{(5x+1)(2x-3)}$ oe 3 W1 denominator correct in answ any brackets)<br>M1 $\frac{5(2x-3)}{2(5x+1)} \frac{1}{41} \frac{1}{12}$                 |                                   |  |  |
| (5x+1)(2x-3) M1 5(2x-3)-2(5x+1) A1-1'                                                                                                                     | 7                                 |  |  |
| <b>12</b> $x > -0.16$ or $-0.16 < x$ <b>3 M1</b> 2 moves completed correct                                                                                | ly                                |  |  |
|                                                                                                                                                           |                                   |  |  |
| or $x > -\frac{4}{25}$ M1 2 more moves completed or Final mark must be given for ans                                                                      |                                   |  |  |
| $\frac{25}{2}$                                                                                                                                            |                                   |  |  |
| <b>13</b> 0.64 $\frac{16}{25}$ <b>3 M1</b> $p = k/(q+2)^2$ <b>M1</b><br>or $p(q+2)^2 = k$ <b>A1</b>                                                       | $p = (k/(q+2))^2$                 |  |  |
| 25 or $p(q+2)^2 = k$ AI                                                                                                                                   | $k^2 = 64 \text{ or}$             |  |  |
| AI  k = 64                                                                                                                                                | <i>k</i> = 8                      |  |  |
| If no marks awarded                                                                                                                                       |                                   |  |  |
| <b>SC1</b> 4 : $k/16$ in this form                                                                                                                        | •                                 |  |  |
| p: k/100 (colon optional)                                                                                                                                 | al)                               |  |  |
| or SC1 for either                                                                                                                                         |                                   |  |  |
| $4 = k/(2+2)^2 \text{ or } 4 = k/4^2$                                                                                                                     |                                   |  |  |
| 14(a) 45498 or $4.5498 \times 10^4$ cao2M1 $2.656 \times 10^9 \div 58376$                                                                                 |                                   |  |  |
|                                                                                                                                                           |                                   |  |  |
| (b) 7240 2 M1 $\frac{(a)}{2\pi} = (r)$                                                                                                                    |                                   |  |  |
| $2\pi$                                                                                                                                                    |                                   |  |  |

|       | Page 3                                  |                   | k Schem                                                       |                                            | Syllabus                                                                                                 | Paper                 |
|-------|-----------------------------------------|-------------------|---------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|
|       |                                         | IGCSE – Octo      | ber/Nove                                                      | ember 2008                                 | 0580/0581                                                                                                | 22                    |
| 15 (8 | <b>a)</b> 1                             |                   | 1                                                             |                                            |                                                                                                          |                       |
| (     | •) 1                                    |                   | 1                                                             |                                            |                                                                                                          |                       |
| (t    | <b>b)</b> 0                             |                   | 2                                                             | <b>M1</b> tan180                           |                                                                                                          |                       |
|       | tan r - 6                               |                   |                                                               |                                            |                                                                                                          |                       |
| (0    | $\frac{\tan x - 6}{2}$                  | oe                | 2                                                             | M1 subtracting 6                           | and then dividing by                                                                                     | 2 soon                |
|       | 2                                       |                   | 2                                                             |                                            | ÷ •                                                                                                      | 2 50011               |
|       |                                         |                   | e.g. $\frac{x-6}{2}$ or $\frac{y-6}{2}$ or $\frac{f(x)-6}{2}$ |                                            |                                                                                                          |                       |
| 16 (8 | <b>a)</b> 1000 140                      | 00 1960 2744 3842 | 2                                                             |                                            | sf answers or better                                                                                     |                       |
| a     |                                         | (2740) (3840)     |                                                               | <b>D1</b> 0 4 5 1 4                        |                                                                                                          | . 1 1                 |
| (1    | <b>b</b> )                              |                   | 2                                                             | C1 smooth curve                            | orrect or ft from their                                                                                  | table                 |
| 1     |                                         | /                 |                                                               | To half a small squ                        |                                                                                                          |                       |
|       |                                         |                   |                                                               | -                                          |                                                                                                          |                       |
|       |                                         |                   |                                                               |                                            |                                                                                                          |                       |
|       |                                         | <b>_</b>          |                                                               |                                            |                                                                                                          |                       |
|       | > > > > > > > > > > > > > > > > > > > > | -                 |                                                               |                                            | e are drawn mark the                                                                                     | curve                 |
|       | c) $3.2 \text{ or } 3.3$                |                   | 1ft                                                           | cao or ft from their                       | r (b)                                                                                                    |                       |
| 17 (8 | a) (i) –3p –                            | – <b>q</b>        | 1                                                             | allow $-(3\mathbf{p}+\mathbf{q})$          |                                                                                                          |                       |
|       | (ii) -4p -                              | + 2 <b>q</b>      | 1                                                             | allow –(4 <b>p</b> – 2 <b>q</b> ) o        | or $-2(2\mathbf{p}-\mathbf{q})$ or $2(\mathbf{q}-2)$                                                     | 2 <b>p</b> )          |
|       | (iii)                                   | -5 <b>p</b>       | 2                                                             | M1 (ii) $-(p+2q)$                          | or $BC - AC = BA$                                                                                        |                       |
|       |                                         | -                 |                                                               | or (ii) – p – 2q                           |                                                                                                          |                       |
|       | b) 10<br>a) 1.05                        |                   | 1 2                                                           | M1 clear attempt a                         | nt v_sten/r_sten                                                                                         |                       |
| 10 (1 | <b>"</b> ) 1.05                         |                   | 2                                                             | in cicar accompt t                         |                                                                                                          |                       |
| (1    | <b>b)</b> 3360                          |                   | 3                                                             |                                            | area under the graph                                                                                     |                       |
|       |                                         |                   |                                                               | <b>W1</b> $\frac{(140+180)\times}{2}$      | 21                                                                                                       |                       |
|       |                                         |                   |                                                               | 2<br>May be done by tr                     | iangles and rectangles                                                                                   |                       |
|       |                                         |                   |                                                               |                                            | langles and rectangles                                                                                   |                       |
| · · · | c) 18.7                                 |                   | 1ft                                                           | (b) / 180 evaluated                        | l correctly                                                                                              | ,                     |
| 19 (8 | a) 37.1                                 |                   | 3                                                             |                                            | $\frac{10^2}{10^2}$ or $\frac{30}{360} \times \pi \times 5^2$<br>$\frac{30^2}{30} \times \pi \times 5^2$ |                       |
| (t    | <b>b)</b> 41.3                          |                   | 3                                                             |                                            | $t \times 10 \text{ or } 30/360 \times 2 \times 2$                                                       | $\times \pi \times 5$ |
| Ì     | ·                                       |                   |                                                               | <b>M1</b> 10 + 5 + 10 +                    | 5 + both their arcs                                                                                      |                       |
| 20 (8 | a) $600x + 12$                          | $x00y \ge 720000$ | 1                                                             | seen                                       |                                                                                                          |                       |
| (ł    | <b>b)</b> $x + y \le 90$                | 0                 | 1                                                             |                                            |                                                                                                          |                       |
| (0    | c)                                      |                   | 4                                                             | <b>W1</b> drawing $x + y$                  | y = 900                                                                                                  |                       |
|       |                                         |                   |                                                               | W1 drawing $x + 2$                         | y = 1200                                                                                                 |                       |
| 30    | R                                       |                   |                                                               | W1 R is below $x =$<br>W1 R is above $x =$ |                                                                                                          |                       |
| 60    | 00                                      |                   |                                                               | The lines must be                          |                                                                                                          |                       |
|       |                                         |                   |                                                               | Accurate to one sn                         | ÷ .                                                                                                      |                       |
|       | <u> </u>                                | 900 1200          |                                                               |                                            |                                                                                                          |                       |
| (0    | <b>d)</b> 300                           |                   | 1ft                                                           | Correct or ft from                         | their labelled R,                                                                                        |                       |
| Ì     |                                         |                   |                                                               |                                            | he lowest y value in R                                                                                   |                       |
|       |                                         |                   | 70                                                            |                                            |                                                                                                          |                       |