MARK SCHEME for the October/November 2008 question paper

0580 and 0581 MATHEMATICS
 0580/03 and 0581/03 Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$\mathbf{0 5 8 0}$ and 0581	$\mathbf{0 3}$

Abbreviations

art answer rounding to
cao correct answer only
ft follow through after an error
oe or equivalent
soi seen or implied
SC Special Case

Qu	Answers	Mark	Part Marks
1 (a) (i) (ii) (b) (i) (ii) (iii) (c)	$\frac{3}{5} \times 30000$ or $30000-\frac{2}{5} \times 30000$ 10500 $\frac{13}{60}$ (\$)13 000 24	M1 W3 W2 W2 W1ft W3cao	Must see evidence of fractions M1 for $\frac{5 \text { or } 4 \text { or } 3}{5+4+3} \times 18000$ A1 for 1 correct answer M1 for $\frac{35}{100} \times 30000$ or 0.35×30000 W1 for $\frac{6500}{30000}$ seen or other 'correct' fraction. M1 for $15500-12500$ or $\frac{15500}{12500} \times 100$ M1 for $\frac{3000}{12500} \times 100 \quad$ or ' 124 ' -100
$2 \text { (a) (i) }$ (ii) (iii) (b) (c) (i) (ii)	52.3 art 24.4 art 17.0 art '24.4' - '17.0' (= 7.4) 14.1 art 31.7 art	W2cao W2 ft W2cao M1 W2cao W2cao	M1 for $55 \cos 18^{\circ}$ M1 for ' $52.3^{\prime} \tan 25^{\circ}$. Ft their ED M1 for $55 \sin 18^{\circ}$ or $\sqrt{ }\left(55^{2}-‘ 52.3^{\prime 2}\right)$ or ${ }^{‘} 52.3^{\prime}$ $\tan 18^{\circ}$ Long methods, e.g. sine rule must be explicit and 'correct'. Allow for clear attempt to find $F D-A D$. M1 for $\sqrt{ }\left(12^{2}+7.4^{2}\right)$ or correct long methods $12 \div \cos \left(\tan ^{-1} \frac{7.4}{12}\right)$ or $7.4 \div \sin \left(\tan ^{-1} \frac{7.4}{12}\right)$ M1 for $\tan (F B A)=\frac{7.4}{12}$ oe or $\sin F B A=\frac{7.4}{\frac{7}{F B^{\prime}}}$ or $\cos F B A=\frac{12}{I F B^{\prime}}$
3 (a) (i) (ii) (iii) (b)	$\begin{aligned} & \hline 12 \\ & 7 \\ & 8.5 \\ & 10 \text { points correctly plotted } \end{aligned}$	$\begin{aligned} & \text { W1 } \\ & \text { W1 } \\ & \text { W2 } \\ & \text { W3 } \end{aligned}$	M1 for Attempt at ordering the data. W2 for 8 or 9 points correctly plotted W1 for 6 or 7 points correctly plotted

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$\mathbf{0 5 8 0}$ and 0581	$\mathbf{0 3}$

Qu	Answers	Mark	Part Marks
(c) (i) (ii) (d) (i) (ii)	8.58(3...) or 8.6 Plotted (their (c)(i), 38.8) Line of fit Negative	W2 W1ft W1 W1	M1 for attempt at totalling data $\div 12$ Allow method if 1 error or omission, but must see an attempt (or judge implied) to divide by 12 Line must indicate understanding
4 (a) (b) (c) (d)	22° Tangent (and) radius/ diameter (meet at) 90° 90° (Angle in a) semi-circle 68° (Angles in a)triangle (=) 180° 68° Alternate or Z (angles)	W1cao W1 W1cao W1 W1ft W1 W1cao W1	Degree symbol not essential throughout question. Allow perpendicular for 90° Ft is 180 - (their (a) + their (b)) or alternate segment (theorem) Allow Z correctly placed on the diagram.
5 (a) (b) (i) (ii) (c) (i) (ii) (d) (i) (ii)	6 1030 Line from 0930 to 0945 Line to ('10 30', 18) 20 Line $(1115,0)$ to (their 1135,18) Line $(1200,18)$ to $(1245,0)$ 24	W1 W1ft W1 W1ft W1 W2	M1 for $\frac{15}{20}$ SC1 for 1015 accuracy $\pm 1 \mathrm{~mm}$ ft their time in (c)(i) provided in minutes and $\leqslant 45$ Line $(1115,0)$ to $(11[15+' 20$ ' $], 18)$ M1 for $18 \div 0.75$ Allow $18 \div 45 \times 60$ for method
6 (a) (i) (ii) (b)	$\begin{aligned} & (y=) 13 \\ & (x=) 9 \\ & \frac{75-2 y}{7} \text { or } \frac{2 y-75}{-7} \end{aligned}$	W2 W2 W2	M1 for $(2 y=) 75-7 \times 7$ M1 for $7 x=75-12$ or $-7 x=12-75$ M1 for $7 x+2 y=75$. $7 x=75-2 y$ or $-7 x=2 y-75$ or $-7 x-2 y=-75$

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$\mathbf{0 5 8 0}$ and 0581	03

Qu	Answers	Mark	Part Marks
(c)	$(x=) 11,(y=)-1$	W3	M1 for multiply and correct add/subtract or correct substitution. A1 for $x=11$ or $y=-1$
$7 \quad$ (a) (b) (c)	$3,-3,3$ 8 correctly plotted points Smooth curve $(-0.5,-3.25)$ Line $x=-0.5$ drawn $x=-0.5 \mathrm{oe}$	W3 W3ft W1 W2ft W1cao W1ft	W1 for each correct value W2 for 6 or 7 points, W1 for 4 or 5 points Half square accuracy must go below line $y=-3$ W1 for one coordinate correct Ft their graph but $-1<x<0$ and $y<-3$ Allow calculated if exact values (W2 or W1) Half square accuracy Ft any vertical line only
8 (a) (i) (ii) (b) (c) (i) (ii) (d)	$\begin{aligned} & (-3,-2) \\ & (A B=)\binom{4}{2},(B C=)\binom{-3}{2} \\ & (1,-5),(5,-3),(2,-1) \\ & P(5,2), Q(-1,6) \\ & \text { Enlargement } \\ & \text { (Scale factor) } 2 \\ & \text { (Centre) } A \text { or }(-3,-2) \\ & (0,-4) \text { marked } \\ & \text { Joined to } A \text { and } B \end{aligned}$	W1 W1, W1 W2 W1, W1 W1 W1 W1ft W1 W1ft	SC 1 for $\binom{2}{4}$ and $\binom{2}{-3}$ W1 for 2 correct points plotted Must join points, with straight lines, for both marks. Ft their (a)(i) Zero if not a single transformation Their image of C joined to A and B.
9 (a) (i) (b) (i) (ii)	99 to 101 (metres) 103° to 105° Bisector of angle $A B C$ (45 ± 1 to $B C$) with arcs Bisector of $A D$ with arcs $\pm 1 \mathrm{~mm}$ from centre of $A D$ and 89° to 91° to $A D$. Closed region T indicated	W1 W1 W2 W2 W1	W1 correct bisector without arcs W1 correct bisector without arcs. Bisector about 89° to 91° to $A D$ by eye and centre within 2 mm by eye. Dependent on at least W1 for each bisector. Allow T omitted if region is clear.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0580 and 0581	$\mathbf{0 3}$

Qu	Answers	Mark	Part Marks
(c)	Lines parallel to and 3 cm ($\pm 0.1 \mathrm{~cm}$) from $A B$ and $B C$. Lines joined by arc, centre B. radius $3 \mathrm{~cm}(\pm 0.1 \mathrm{~cm})$	$\begin{aligned} & \text { W1 } \\ & \text { W1 } \end{aligned}$	
10 (a) (b) (c) (i) (ii) (d)	$\begin{aligned} & \text { (Lines) } 10 \text { and } 13 \\ & \text { (Dots) } 8 \text { and } 10 \\ & \text { (Lines) } 31 \text {, (Dots) } 22 \\ & 3 n+1 \text { oe } \\ & 2 n+2 \text { oe } \\ & n-1 \text { or } 1-n \end{aligned}$	W1 W1 W1, W1 W2cao W2cao W2ft	SC1 for $j n+1$ or $3 n+k$ where j and k are integers. $j \neq 0$ SC 1 for $j n+2$ or $2 n+k$ where j and k are integers. $j \neq 0$ M1 for ' $(3 n+1)$ ' - ' $(2 n+2)$ ' or reversed Ft and M1 dependent on two linear algebraic expressions

