MARK SCHEME for the October/November 2008 question paper

0580 and 0581 MATHEMATICS
 0580/04 and 0581/04 Paper 04 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$0580 / 0581$	04

Abbreviations

cao correct answer only
cso correct solution only
dep dependent
ft follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
www without wrong working

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$0580 / 0581$	04

1 (a) (i)	(\$) 6000 cao	B2	M1 for $0.1 \times 10000+0.25 \times 20000$ oe	
(ii)	15 (\%) cao	B2	$\text { M1 for } \frac{\text { their }(\boldsymbol{a})(\boldsymbol{i})}{40000} \times 100$	
(b)	(\$) 11200 ft	B1 ft	ft 17200 - their (a)(i)	
(c) (i)	(\$) 7500 cao	B2	M1 for $\frac{12000}{5+3} \times 5$ oe After M0, SC1 for 4500	
(ii)	9/80 cao	B1	Ignore decimals or \%'s seen Mark final fraction	
(d)	(\$) 8640 cao	B2	M1 for $10800 \div 1.25$ oe	
		10]		

2 (a) (i)	$\begin{aligned} & x(x+4) / 2=48 \text { oe } \\ & x^{2}+4 x-96=0 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { E1 } \end{aligned}$	Eqn must include 48 Dep on M1 + shows one intermediate algebraic step with no errors seen
(ii)	- 12 or 8	B1B1	Allow deletion of negative root
(iii)	$12(\mathrm{~cm})$ correct or ft	B1ft	Accept 12 or ft their positive root in part (ii) (if only one) +4 .
(b)	$\frac{4}{5} \quad \text { oe }$	B2	M1 for $\frac{x}{x+4}=\frac{1}{6}$ oe
(c) (i)	$\begin{aligned} & (x+4)^{2}+x^{2}=9^{2} \text { oe or } \\ & x^{2}+8 x+16+x^{2}=81 \\ & 2 x^{2}+8 x-65=0 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { E1 } \end{aligned}$	Accept $2^{\text {nd }}$ line for M1 $\text { or } 2 x^{2}+8 x+16=81$ Dep on M1 with no errors, expanded brackets step needed
(ii)	$\begin{aligned} & \frac{p+(-) \sqrt{ } q}{r} \text { where } p=-8 \text { and } r=2 \times 2 \\ & \text { and } q=8^{2}-4(2)(-65) \mathrm{oe} \\ & (584) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \end{aligned}$ A1A1	Allow second mark if in form $p \pm \frac{\sqrt{q}}{r}$ SC2 if correct solutions but no working shown or SC1 for -8.041522987 and 4.041522987 rounded or truncated
(iii)	21.08 or $21.1(\mathrm{~cm})$ strict ft	$\begin{aligned} & \hline \text { B1ft } \\ & \text { dep } \end{aligned}$	ft 4.04 in part (ii) or $2 \times$ a positive root +13

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$0580 / 0581$	04

(a)	5.(04), $0(.0), 8.7$ or $8.66(6 \ldots)$ or better seen	B3	1 each
(b)	Correct axes for domain and range 10 correct points, on correct grid line or within correct 2 mm square vertically Reasonable curve through 10 points condone curvature around $x=-0.2$ and 0.2 Two separate branches	$\begin{gathered} \hline \begin{array}{c} \text { S1 } \\ \text { P3ft } \end{array} \\ \text { C1ft } \\ \text { B1ft } \end{gathered}$	P2ft for 8 or 9 correct P1ft for 6 or 7 correct Correct shape, not ruled, within 1 mm of points (curves could be joined) Independent but needs two 'curves' on either side of y-axis
(c) (i)	$\begin{aligned} & y=-3 x \text { ruled correctly } \\ & -2.95 \text { to }-2.6,-0.75 \text { to }-0.6,0.5 \text { to } 0.6 \end{aligned}$	$\begin{aligned} & \hline \text { L1 } \\ & \text { B2 } \end{aligned}$	Check at $(-1,3)$ to $(1,-3)$ within mm (can be shorter) B1 for 2 correct. isw y-values No penalty for each extra value if curve is cut more than 3 times
(ii)	$(a=) 3 \quad(b=)-1$	B1B1	After $0,0 \mathbf{S C 1}$ for $x^{3}+3 x^{2}-1=0$
(d)	Tangent to their curve ruled at $x=-2$ rise/run using correct scales -4.5 to -3	$\begin{gathered} \text { T1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Must be a reasonable tangent allow slight daylight $<1 \mathrm{~mm}$ Dep on $\mathbf{T 1}$ (implied by answer 3 to 4.5) Must show working if answer out of range

| 4 (a) | 72 | B1 | |
| :---: | :--- | :---: | :--- | :--- |
| (b) (i) | $0.5 \times 15 \times 15 \sin ($ their 72) \quad oe
 106.9 to $107\left(\mathrm{~cm}^{2}\right)$
 cso | M1
 A1 | not for 90°
 www2 |
| (ii) | 534.5 to $535\left(\mathrm{~cm}^{2}\right) \quad$ ft | $\mathbf{B 1 ~ f t ~}$ | ft their $(\mathbf{i}) \times 5$ |

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$0580 / 0581$	04

5 (a)	$(60+40) / 35$ Correct method to convert a decimal time to minutes 1446 or 246 pm cao	M1 M1 A1	(2.857...) could be in parts ft a decimal either full answer or decimal part $\times 60$ (e.g. 51.(428), 171.(4..)or 2 hrs 51 or 51 m) www3
(b) (i)	260	B1	
(ii)	145	B1ft	ft their (b) (i) - 115
(c)	$\begin{aligned} & \left(A C^{2}=\right) 40^{2}+60^{2}-2 \times 40 \times 60 \times \cos 115 \\ & (A C=) \sqrt{ } \text { of a correct combination } \\ & 85(.0 \mathrm{~km}) \text { cao } \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for correct implicit version dependent (7229) www4
(d)	$\begin{aligned} & \frac{\sin A}{60}=\frac{\sin 115}{\text { their }(c)} \text { oe } \\ & (\sin A=) \frac{\sin 115}{\text { their }(c)} \times 60 \\ & 39.76 \text { to } 39.8 \quad \text { cao } \end{aligned}$	M1 M1 A1	Implicit equation Could use cosine rule M1 for implicit and M1 for explicit form Dep on M1 Explicit equation www3
(e)	$\begin{aligned} & 40 \sin 80+60 \sin 35 \mathrm{oe} \\ & \begin{array}{l} 39.4) \quad(34.4) \end{array} \\ & 73.76-73.81(\mathrm{~km}) \text { cao } \end{aligned}$	M2 A1	their $(\mathbf{c}) \times \sin (100-$ their $(\mathbf{d}))$ or their $\mathbf{(c)} \times \cos ($ their $(\mathbf{d})-10)$ M1 for either $40 \sin 80$ or $60 \sin 35$ or implicit trig version using their (c) www3
			[15]

6 (a) (i)	30	B1	
(ii)	30, 30.5, 31	$\begin{gathered} \hline \text { B1 B1 } \\ \text { B1 } \end{gathered}$	Penalty 1 for each extra value Ignore repeated values
(iii)	$\frac{10 \times 30+7 \times 31+x \times 32}{10+7+x}=30.65$ correct clearance of fraction 3 cao	M1 M1 A1	Dep on M1 e.g. $517+32 x=521.05+30.65 x$ oe www3
(b) (i)	$\begin{aligned} & \frac{35 \times 15+115 \times 21+26 \times 23+24 \times 27}{200} \\ & 20.93 \text { or } 20.9 \quad \text { cao } \end{aligned}$		(4186/200) M1 for use of 15, 21, 23, 27 (allow one error) and M1 for use of $\sum f x$ with value of x in correct range used (allow one further error) and $\mathbf{M} \mathbf{1}$ dep on $\mathbf{2}^{\text {nd }} \mathbf{M}$ for dividing by $\sum f$ or 200 www4 Accept 21 after M3 earned
(ii)	$\begin{aligned} & 2.6 \text { cao } \\ & 0.7 \text { and } 0.8 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B4 } \end{aligned}$	B3 for one correct or B2 for 3.5 and 4 seen or B1 for 4 seen

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$0580 / 0581$	04

7 (a) (i)	Translation only $\binom{0}{-11}$ oe	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Throughout parts (i) to (v) if more than one transformation is given then no marks at all for that part Accept T
(ii)	Reflection only $x=1$ oe only	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept M
(iii)	Reflection only $y=-x$ oe only	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept M
(iv)	Enlargement only (centre) (2, 0), only (scale factor) 0.5 oe only	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept E
(v)	Stretch only (factor) 2, only x-axis oe invariant cao only	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept S Ignore parallel to y-axis
(b) (i)	$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$	B2	B1 each column
(ii)	$\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$	B2	B1 for right hand column [16]

8 (a)	$x=78$ alternate angles either $y=144$ or $z=102$ (opposite angles of) cyclic quad ($=180$) and $z=102$ or $y=144$ Angles (in (a)) quadrilateral (=360) or (opp angles of) cyclic quad $(=180)$	B1 R1 B1 R1 B1 R1	Dep on B1 Accept Z angle, extras can spoil Accept longer reasons using correct language and clarity with angles used. e.g. allied angles gives 102° and angles on a straight line $=180^{\circ}$ Dep on B1, extras can spoil Dep on B1 extras can spoil
(b)	Their $z+36 \neq 180$ oe	R1	Could also use their angles x and y provided $x+$ $y \neq 180$. Could be a longer reason involving angles must be clearly explained.
(c)	72 or 288	B1	
(d)	51 cao	B1	[9]

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$\mathbf{0 5 8 0 / 0 5 8 1}$	$\mathbf{0 4}$

9 (a)	$\begin{aligned} & (p=) 5 \text { cao, } \\ & (q=) 12 \mathrm{cao} \\ & (r=) 1 \mathrm{ft} \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1ft } \end{gathered}$	Accept in correct order if no labels ft for $r=18$ - their p - their q provided r not negative
(b) (i)	$17 \quad$ cao	B1	
(ii)	12 cao	B1	
(c) (i)	26 cao	B1	
(ii)	57 ft	B1ft	ft $45+$ their q
(d) (i)	$\frac{8}{100} \text { oe isw }$	B1	
(ii)	$\frac{45}{100} \text { oe isw }$	B1	
(e)	Any fraction with denominator 74 seen $\frac{37}{74} \times \frac{36}{73}$ $\frac{18}{73}$ oe isw cao	B1 M1 A1	ft their fraction i.e. one taken off each part $\frac{k}{l} \times \frac{k-1}{l-1} \quad$ N.B $\frac{1}{2} \times \frac{36}{73}$ gets B1M1 $\frac{1332}{5402}$ www3 (if decimal then 0.247 or better) Do not accept ratio or in words

10 (a) (i)	$\begin{aligned} & \frac{8 \times(8+1)}{2}=36 \\ & 1+2+3+\ldots .+8=36 \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	
(ii)	80200	B1	
(b) (i)	$\begin{aligned} & 2(1+2+3+\ldots . .+n)= \\ & 2 \times \frac{n(n+1)}{2}=n(n+1) \end{aligned}$	E1	both steps must be shown
(ii)	40200	B1	
(iii)	40000	B1ft	ft their (a)(ii) - their(b)(ii) or their (b)(ii) - 200 ft Not for zero or negative answer
(c) (i)	$\frac{2 n(2 n+1)}{2}$ oe final answer	B1	e.g. $2 n^{2}+n$
(ii)	n^{2} cao	B2	$\begin{aligned} & \text { M1 for their }(\mathbf{c})(\mathbf{i})-n(n+1) \\ & \text { or } n(n+1)-n \\ & \text { or } n / 2(2+2(n-1)) \end{aligned}$

