MARK SCHEME for the May/June 2009 question paper

 for the guidance of teachers
0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2009	0580,0581	04

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working

1 (a)	$(\$) \mathbf{4 5 0}$	B2	M1 for $650 \div(9+4) \times 9$ $(\div 14$ does not imply $9+4)$
(b) (i)	$(\$) \mathbf{1 2 0}$	B2	M1 for 0.8×150 o.e.

2 (a)	1	B1	
(b)	2.5 o.e.	B1	
(c)	2.96 c.a.o.	B2	If B0, M1 for $15 \times 1+10 \times 2+7 \times 3+5 \times 4+6 \times 5+7 \times 6$ (allow one slip) implied by 148 seen Ignore subsequent rounding
(d)	60×2.95 (= 177) their 177 - their 148 (or $50 \times$ their 2.96) $($ Mean of new rolls $=) 2.9$ c.a.o. www3	M1 M1 A1	Dependent on first \mathbf{M} and only if positive or M1 for $\frac{\text { their } 148(50 \times \text { their } 2.96)+x(\text { or } 10 x)}{60}=2.95$ then M1 for $x($ or $10 x)=60 \times 2.95-$ their 148 (or $50 \times$ their 2.96) and only if positive

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2009	$\mathbf{0 5 8 0 , 0 5 8 1}$	04

3 (a)	$(\sin P)=\frac{48}{0.5 \times 10 \times 14}$ o.e. $\underline{\text { fraction }}$ $P=43.29 \ldots \text { cao }$	M2 A1	M1 for $0.5 \times 10 \times 14 \sin P=48$ o.e. Allow $0.5 \times 10 \times 14 \sin 43.3=48$ for M1 but no further credit
(b)	$10^{2}+14^{2}-2 \times 10 \times 14 \cos 43.3(=92.2)$ Evaluating square root $(Q R=) 9.6(0)(9.60 \text { to 9.603...) c.a.o. ww2 }$	M2 M1 A1	If M0, M1 for correct implicit statement M1 (dependent on M2) for square root of correct combination (not negative) i.e $16 \cos 43.3$ (11.64..) implies M2M0

4 (a)	$(A B=) \frac{250}{\sin 126} \times \sin 23 \quad$ (s.o.i by $\left.120 \ldots\right)$	M2	M1 for $\frac{A B}{\sin 23}=\frac{250}{\sin 126}$ o.e. (implicit)	
	$\mathbf{1 2 1 (\mathbf { 1 2 0 . 7 } \text { to 121)(m) }}$ c.a.o. \quad www3	A1		
(b) (i)	$\mathbf{2 8 0}$	B1		
(ii)	(0)69	c.a.o.	B2	SC1 for answer 249

5 (a) (i)	1.5, 3.75, -1.5	B1,B1,B1	
(ii)	12 points plotted $\mathbf{f t}$ Curve through at least 10 points and correct shape over full domain Two separate branches, one on each side of y-axis, neither in contact with y-axis	$\begin{gathered} \text { P3 ft } \\ \text { C1 } \\ \text { B1 } \end{gathered}$	$\mathbf{P 2} \mathrm{ft}$ for 10 or 11 points, P1 ft for 8 or 9 points i.s.w. if two branches joined Independent
(b)	-1.4 $\leq x \leq-1.1$ and $3.1 \leq x \leq 3.4$	B1,B1	i.s.w. 3 rd answer if curve cuts $y=1$ again
(c) (i)	Correct ruled tangent at $x=2$ or $x=-2$ Evidence of rise/run 0.8 to 1.2	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Long enough to be able to find gradient Dependent - check their graph against gradient of 1 - must be correct side of 1 No tangent drawn M0M0
(ii)	0.8 to 1.2 inc. or same answer as (i) ft	B1 ft	
(d) (i)	Correct ruled line to cut curve for all possible intersections (at least 2)	B1	Within $1 / 2$ square of $(-1,1)$ and $(1,-1)$
(ii)	-1.3 to -1.05, 1.05 to 1.3 inclusive	B1, B1	i.f.w. any extra answers
(e)	$y=k x$ with $k \geq \frac{1}{2}$ o.e. or $x=0$	B2	If $\mathbf{B 0}$, allow $\mathbf{S C 1}$ for $y=k x$ with $k<\frac{1}{2}$ or for y-axis stated

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2009	$\mathbf{0 5 8 0 , 0 5 8 1}$	04

6 (a) (i)	$0.5[(x+6)+(x+2)] \times(x+1)(=40) \text { or }$ better $\begin{aligned} & 0.5(2 x+8)(x+1)(=40) \text { o.e. } \\ & 0.5\left(2 x^{2}+10 x+8\right)(=40) \text { o.e. } \\ & x^{2}+5 x+4=40 \quad \text { o.e. } \\ & x^{2}+5 x-36=0 \end{aligned}$	M1A1 E1	M1 for any algebraic use of half base \times height (Brackets may be implied later) May be first line If this first line, then M0 Dependent on M1A1. Fully established no errors throughout and at least 2 steps, one with 40 or 80 , after first line
(ii)	-9,4	B1,B1	If $\mathbf{B 0}, \mathbf{S C 1}$ for +9 and -4
(iii)	$\begin{aligned} & \left(B C^{2}=\right)(\text { their } x+1)^{2}+(\text { their } x+2)^{2} \\ & (B C=) \mathbf{7 . 8 1 (0 \ldots)}) \text { c.a.o. www2 } \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	Their x must be positive Ignore any extra solutions
(b) (i)	$\begin{aligned} & 9 \frac{5}{12} \text { or } \frac{108+5}{12} \text { or } \frac{9 \times 12+5}{12} \text { or } \frac{565}{60} \\ & \text { or } \frac{9 \times 60+25}{60} \text { seen } \end{aligned}$	E1	Must be fractional form Condone 113/12 $\times 60=565$; $9 \times 60+25=565$ Not for decimals
(ii)	$\begin{aligned} & \frac{3 y+2}{3} \text { or } \frac{y+4}{2} \quad \text { o.e. } \\ & \frac{2(3 y+2)}{6}+\frac{3(y+4)}{6} \text { o.e. } \end{aligned}$	B1 B1	$\text { or } \frac{6 y+4}{6}+\frac{3 y+12}{6} \text { o.e. }$
(iii)	$\begin{aligned} & \frac{2(9 y+16)}{12}=\frac{113}{12} \text { o.e. } \\ & y=4.5 \quad \text { c.a.o. } \quad \text { www2 } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	o.e. means with common denominator or better (Trial and error scores 2 or 0.)
(iv)	$\begin{aligned} & (\text { Total dist }=)(3 \times \text { their } y)+2+(\text { their } y)+4 \\ & \text { o.e. } \\ & (\text { Average speed }=) \frac{\text { their } 24}{95 / 12} \text { o.e. } \\ & \mathbf{2 . 5 5}(\mathrm{km} / \mathrm{h})(2.548-2.549) \text { c.a.o. www } 3 \end{aligned}$	M1 M1 A1	$(=24)$ (dependent) Must be km divided by hours o.e. for full method Accept fractions in range

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2009	0580,0581	04

7 (a)	$\begin{aligned} & 250 x^{2}=4840 \quad \text { o.e. } \\ & x^{2}=19.36 \text { or }(x=) \sqrt{4840 \div 250}(=4.4) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { E1 } \\ & \hline \end{aligned}$	Allow M1 for $250 \times 4.4^{2}=4840$ Then E1 for $250 \times 19.36=4840$
(b)	42.6 (kg) cao (42.592 or 42.59)	B2	SC1 for figures 426 or 4259...
(c)	26.4 (cm) c.a.o.	B2	If $\mathbf{B 0}, \mathbf{M 1}$ for any of following $88 \div 4.4=20$ and $120 \div 20=6$ (accept 6 bars high o.e.) or $88 h=4.4^{2} \times 120$ or $250 \times 88 \times h=120 \times 4840$
(d) (i)	$4840 \div 4200$ (implied by $1.15(2)$) $\div 4 / 3 \pi$ (implied by 0.274 to 0.276) $\sqrt[3]{ }$ (seen or implied by correct answer to more than 2 dp) $0.649-0.651$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { dep } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 4200 \times 4 / 3 \pi r^{3}=4840 \\ & \left(r^{3}=\right) 4840 \div(4200 \times 4 / 3 \pi) \\ & \sqrt[3]{ } \text { Third M dependent on M1M1 } \end{aligned}$ Must be 3dp or better
(ii)	$5.31(5.306-5.31)\left(\mathrm{cm}^{2}\right)$	B1	
(iii)	$\frac{4200 \times \text { their (ii) }}{2 \times 4.4^{2}+4 \times 4.4 \times 250} \times 100$ 501.9-503 (\%) c.a.o. www4	M3 A1	If M0, M1 for $4200 \times$ their (ii) (22299) and M1 (independent) for correct method for surface area of solid cuboid (4438.72)
			[15]

8			Throughout the question ratios score zero. If using decimals, 2 s.f. correct answers to parts (c) and (d) - penalty of 1 once Use of words e.g. 1 in 400 or 1 out of 400, Correct answers - penalty of one For method marks only accept probabilities p and q between 0 and 1
(a)	$p=\frac{1}{20}, q=\frac{19}{20}$ o.e.	B1	Could be on diagram
(b) (i)	$\frac{1}{400}$ o.e. \quad c.a.o.	B2	0.0025 allow M1 for (their $p)^{2}$ o.e.
(ii)	$\frac{38}{400}$ o.e. c.a.o.	B2	0.095 allow M1 for 2 (their p)(their q) o.e.
(c)	$\frac{38}{8000}$ o.e. c.a.o.	B2	0.00475 allow M1 for $2(\text { their } p)^{2}($ their q) o.e. including their (ii) \times their p
(d)		$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	0.00725
(e)	their $(\mathbf{d}) \times 1000=7.25$ o.e. $\quad \mathbf{f t}$	B1 ft	Accept 7 or 8 or an equivalent integer ft

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2009	0580,0581	04

9 (a) (i)	174 to 174.25 (cm) c.a			B1	
(ii)	167 (cm) c.a.o.			B1	
(iii)	$12(\mathrm{~cm})$ c.a.o			B1	
(iv)	37 c.a.o.			B2	If B0, B1 for 63 seen in working space
(b) (i) (ii)	$\begin{aligned} & \mathbf{1 0 , 2 5} \\ & 155,165,175,185 \\ & \text { (their } 10 \times 155+\text { their } 25 \times 165+47 \times 175 \\ & +18 \times 185 \text {) } \end{aligned}$			B1 M1 M1 M1 A1	s.o.i. allow 1 slip Use of $\Sigma f x$ where the x 's are in/on their intervals (allow one more slip) (17230) (dependent on second M) $\div 100$

10 (a) (i)	-2,	B1	
(ii)	26,	B1	
(iii)	$\frac{1}{8}$ o.e.	B1	
(b)	$\begin{aligned} & \frac{y+1}{2}(=x) \\ & \left(\mathrm{f}^{-1}(x)=\right) \frac{x+1}{2} \quad \text { o.e. } \quad \text { www2 } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	If switch x and y first then M1 for $x=2 y-1 \quad$ or If use a diagram/chart then M1 for any evidence of +1 then result $\div 2$
(c)	$\begin{aligned} & z=x^{2}+1 \\ & z-1=x^{2} \\ & (x=) \sqrt{z-1} \quad \text { www2 } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Correct rearrangement at any stage for x or x^{2}. Correct sq root at any stage Ignore,+- or \pm in front of $\sqrt{ }$
(d)	$\begin{aligned} & (2 x-1)^{2}+1 \\ & =4 x^{2}-4 x+2 \text { or } 2\left(2 x^{2}-2 x+1\right) \end{aligned}$ www 2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Final answer but condone one minor factorising slip if first answer seen
(e)	9	B1	
(f)	$\begin{align*} & 2(2 x-1)+x^{2}+1(=0) \text { or better } \\ & \left(x^{2}+4 x-1=0\right) \\ & (x=) \frac{-4 \pm \sqrt{4^{2}-4(1)(-1)}}{2 \times 1} \quad \text { ft } \\ & \\ & \begin{array}{l} (x=)-4.24,0.24 \\ \begin{array}{l} (x i n a l ~ a n s w e r s) ~ \end{array} \end{array} \\ & \end{align*}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1,A1 } \end{gathered}$	$\sqrt{4^{2}-4(1)(-1)}$ or better seen If in form $\frac{p+o r-\sqrt{q}}{r}$ for -4 and 2×1 or better Ft their 1, 4 and -1 from quadratic equation seen After A0A0, SC1 for -4.2 or -4.235 or -4.236... and 0.2 or 0.235 or $0.236 \ldots$.. The SC1's www imply the \mathbf{M} marks
(g) (i) (ii)	Straight line with positive gradient and negative y-intercept U-shape Parabola vertex on positive y-axis	$\begin{aligned} & \hline \text { L1 } \\ & \\ & \text { C1 } \\ & \text { V1 } \\ & \hline \end{aligned}$	Dependent [18]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2009	$\mathbf{0 5 8 0}, \mathbf{0 5 8 1}$	$\mathbf{0 4}$

\begin{tabular}{|c|c|c|c|}
\hline 11 (a) \& 15, 21, 28, 36 \& B2 \& B1 for 3 correct

\hline (b) (i) \& $10+15=25,15+21=36$ etc \& B1 \& Any two complete and correct statements

\hline (ii) \& Square \& B1 \&

\hline (c) (i) \& 2 \& B1 \&

\hline (ii) \& $\frac{4 \times 5}{2}=10 \quad$ o.e. \& E1 \&

\hline (iii) \& 16290 c.a.o. \& B1 \&

\hline (d) (i) \& $$
\begin{array}{ll}
\frac{(n+1)(n+2)}{2} \text { or } \frac{n^{2}+3 n+2}{2} \text { seen } \\
\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2} \text { or } \frac{n^{2}+n}{2}+\frac{n^{2}+3 n+2}{2} \\
\frac{(n+1)}{2}(n+n+2) & \frac{2 n^{2}+4 n+2}{2} \\
\frac{(n+1)(2 n+2)}{2} & n^{2}+2 n+1 \\
\frac{2(n+1)(n+1)}{2}=(n+1)^{2} & (n+1)^{2} \\
\hline
\end{array}
$$ \& M1
M1

E1 \& | Denominator could be their k May be implied by next line |
| :--- |
| This line must be seen and at least one more step, without any error, to gain the E mark |
| Dependent on M1M1. Fully established no errors |

\hline (ii) \& 1711 and 1770 final answers c.a.o. \& B2 \& SC1 for 59 or 58 or 1711 or 1770 seen

\hline
\end{tabular}

Graph for Question 5

