## MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

## 0580 MATHEMATICS

0580/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | IGCSE - October/November 2009 | $\mathbf{0 5 8 0}$ | $\mathbf{0 4}$ |

## Abbreviations

| cao | correct answer only |
| :--- | :--- |
| cso | correct solution only |
| dep | dependent |
| ft | follow through |
| isw | ignore subsequent working |
| oe | or equivalent |
| SC | Special Case |
| soi | seen or implied |
| www | without wrong working |


| 1 (a) (i) | 8.4(0) | B2 | B1 for 1.2 or 3.6 seen or SC1 for figs 84 in answer |  |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | $\frac{\text { their }(\boldsymbol{i})}{20} \times 100$ oe $42 \mathrm{ft} w w w 2$ | M1 <br> A1ft | ft their $8.4 \times 5$ <br> After 0 scored $\mathbf{S C 1}$ ft for $\frac{20-\text { their }(\boldsymbol{i})}{20} \times 100$ correctly given | or |
| (b) | 6 | B2 | M1 for 9 or $8 \div(1+8+3)$ soi |  |
| (c) | $\frac{2.4}{2} \times 3 \quad$ oe $(=3.6$ seen $)$ or their (a) (i) $\div 7 \times 3$ $\frac{3}{12} \times 9 \quad \text { oe }(=2.25 \text { seen })$ <br> 1.6(0) cao www3 | M1 <br> M1 <br> A1 |  |  |
| (d) | $\frac{2.40}{1.25}$ oe 1.92 www2 | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Implied by figs 192 | [11] |


| 2 (a) (i) | Reflection (M), $x=1$ | B1,B1 | If extra transformations given in part (a) then zero scored |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \text { Rotation (R) } \\ & 180 \\ & \text { (centre) }(1,0) \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Must be "rotation". <br> Allow half turn for 180. <br> Allow other clear forms of $(1,0)$ |
| (iii) | Enlargement (E) (centre) $(6,4)$ (scale factor) 3 | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Must be "enlargement" <br> Allow other clear forms of $(6,4)$ e.g. vector Accept 3:1 or 1:3 |
| (iv) | Shear (H) $y$-axis invariant oe (factor) -1 | B1 <br> B1 <br> B1 | Must be "shear" <br> Allow other explanation for invariant but not "parallel to" isw after $y$-axis invariant seen |

$\left.\begin{array}{|r|l|l|l|}\hline \text { (b) (i) } & \left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) & \mathbf{B 2} & \begin{array}{l}\text { B1 for correct right-hand column in } 2 \\ \text { matrix }\end{array} \\ \hline \text { (ii) } & \left(\begin{array}{cc}1 & 0 \\ -1 f t & 1\end{array}\right) & \text { B2ft } & \begin{array}{l}\text { Ft only their factor in (a) (iv) provided not zero } \\ \mathbf{B 1 f t} \text { for left-hand column in 2 by 2 matrix } \\ \text { provided shear factor is not zero }\end{array} \\ \text { or } \mathbf{S C 1} \text { for }\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \text { if not } \mathrm{ft}\end{array}\right]$

| 3 (a) (i) | 1 | B1 | Penalty of -1 in question if any answers given as decimals or percentages (to 3sf) alone, but isw cancelling/conversion after correct answer |
| :---: | :---: | :---: | :---: |
| (ii) | $3 / 6$ oe | B1 |  |
| (b) (i) | $\frac{2}{30}$ oe www2 | B2 | M1 for $\frac{2}{6} \times \frac{1}{5}$ |
| (ii) | 6-12 and 12-6 and 7-11 and 11-7 soi $k \times \frac{1}{6} \times \frac{1}{5}$ for $k=$ integer <br> $\frac{4}{30}$ oe www3 | M1 <br> M1 <br> A1 | Evidence of all pairs adding up to 18 but no extras e.g. $4 / 6 \times 1 / 6$ <br> Without seeing the first M, $\frac{4}{6} \times \frac{1}{5}$ oe scores M2, $\frac{2}{6} \times \frac{1}{5}$ oe scores M1 |
| (iii) | $\begin{aligned} & \frac{4}{6} \times \frac{2}{5} \\ & \frac{8}{30} \text { oe www2 } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |
| (c) | $\frac{2}{6}+\frac{4}{6} \times \frac{2}{5}$ oe $\frac{18}{30}$ oe cao www2 | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | $\frac{2}{6}+\text { their (b) (iii) }$ |
| (d) | 4 | B2 | M1 for $(1+1+6+7+11+12+x) \div 7=6$ or better <br> [13] |

Syllabus

| 4 (a) (i) | Accurate triangle with 2 arcs seen, 2 mm accuracy for lines AC and BC | B2 | SC1 if accurate but no arcs or one arc or if AC and BC are wrong way round with arcs |
| :---: | :---: | :---: | :---: |
| (ii) | Accurate bisector of angle $\boldsymbol{A C B}, 2^{\circ}$ accuracy and both pairs of arcs shown (accept equidistant marks on edges for $1^{\text {st }}$ set of arcs) + must meet $A B$ | B2ft | Ft their triangle <br> SC1ft if accurate but no/one pair of arcs or short with arcs <br> In both (ii) and (iii) isw |
| (iii) | Accurate perpendicular bisector of $\boldsymbol{A D}$ 2 mm accuracy at mid-point and $2^{\circ}$ for right angle and shows both sets of arcs + must meet $A C$ | B2ft | ft their $D$, which must be on $A B$ <br> SC1ft if accurate but no/one pair of arcs or short with arcs |
| (iv) | Correct region shaded cao | B1 | Dependent on correct triangle, accurate bisectors of angle $A C B$ and side $A D$ with correct D |
| (b) (i) | $(\cos C)=\frac{140^{2}+180^{2}-240^{2}}{2 \times 140 \times 180}$ oe - 0.111(1)...or better or 96.37 to 96.38 | M2 E1 | (-5600/50400 or -14/126) <br> Allow use of 7, 9 and 12 <br> M1 for correct implicit statement Verification using 96.4 scores M2 max Accept $-\frac{1}{9}$ but not a non-reduced fraction |
| (ii) | $0.5 \times 140 \times 180 \sin ($ their 96.4$)$ oe 12521 to 12523 or 12500 or 12520 cao www2 | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | $(\mathrm{s}=280)$, allow use of 7, 9 (31.3 $\ldots$ ) |
| (iii) | $\begin{aligned} & (\sin B=) \frac{140 \sin (\text { their } 96.4)}{240} \text { oe } \\ & \mathbf{3 5 . 4} \text { or } \mathbf{3 5 . 4 2} \text { to } \mathbf{3 5 . 4 4} \text { cao } \text { www3 } \end{aligned}$ | $\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$ | Allow use of 7, 12 <br> M1 for correct implicit statement SC2 for correct answer by other method |


| 5 (a) (i) | $(x+3)(2 x+5)-x(x+4)=59$ oe <br> $2 x^{2}+6 x+5 x+15-x^{2}-4 x=59$ <br> $x^{2}+7 x-44=0$ | M1 <br> A1 <br> E1 | Implies M1 (allow $11 x$ for $6 x+5 x)$ <br> Correct conclusion - no errors or omissions |
| ---: | :--- | :---: | :--- |
| (ii) | $(x+11)(x-4)$ | B2 | SC1 any other $(x+a)(x+b)$ where <br> $a \times b=-44$ or $a+b=7$ |
| (iii) | $-\mathbf{1 1 , 4}$ www ft | B1ft | Strict ft dep on at least SC1 in (ii) <br> allow recovery if new working seen |
| (iv) | (an $=\frac{(\text { their }+ \text { ve root })+3}{2(\text { their }+ \text { ve root })+5}$ <br> $\mathbf{2 8 . 3}(00 \ldots) \mathrm{ft}$ www2 oe | Could be alt trig method <br> oe M1 where trig function is explicit <br> A1 one of their positive roots <br> $\left(27.4^{\circ}(27.40-27.41)\right.$ from $\left.x=11\right)$ |  |


| (b) (i) | $\begin{aligned} & \frac{2 x+5}{x+4}=\frac{x+3}{x} \text { oe } \\ & x^{2}+4 x+3 x+12=2 x^{2}+5 x \\ & x^{2}-2 x-12=0 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$ | Must be seen. Allow ratio or correct products <br> Correct expansion of brackets seen (allow $7 x$ for $4 x+3 x$ ) <br> Correct conclusion - no errors or omissions M1 must be seen |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-12)}}{2(1)} \\ & \text { or }(x-1)^{2}-12-1 \\ & \text { and } x-1= \pm \sqrt{13} \quad \text { (B1) } \end{aligned}$ $\text { - 2.61, } 4.61 \text { final answers www4 }$ | $\begin{aligned} & \mathbf{B 1 , B 1} \\ & \text { B1,B1 } \end{aligned}$ | In square root $\mathbf{B 1}$ for $(-2)^{2}-4(1)(-12)$ or better If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$, B1 for $-(-2)$ and 2(1) or better If B0, SC1 for -2.6 and 4.6 or both answers correct to 2 or more dps rot - $2.6055 \ldots, 4.6055 \ldots$. |
| (iii) | 26.4 (26.42.... to 26.44....) ft | B1ft | ft $4 \times$ a positive root +8 |


| 6 (a) (i) | -16 | B1 |  |
| :---: | :---: | :---: | :---: |
| (ii) | 18 to 19 | B1 |  |
| (b) (i) | -4.3 to -4.2, 1.5 to 1.6 | B1,B1 |  |
| (ii) | -4.5 to -4.4, 1.3 to 1.4 | B1,B1 |  |
| (iii) | -4.5 to -4.4 $<x<1.3$ to 1.4 ft | B1ft | Ft their (ii). Allow clear worded explanations and condone $\leqslant$ signs |
| (c) | $-\frac{30}{7}$ oe isw conversion | B2 | Accept $-4 \frac{2}{7}, 30 /-7$ <br> M1 for $30 / 7$ oe fracts, isw conversion or for $-30 / 7$ oe soi |
| (d) | Ruled line passing within 2 mm of $(-5,30)$ and $(2,0)$ | B2 | B1 for ruled line parallel to $\mathrm{g}(x)$. By eye $\left(21^{\circ}\right.$ to $25^{\circ}$ to horizontal if in doubt) allow broken line |
| (e) (i) | Ruled horizontal line through ( $-3,-27$ ) | B1 | No daylight, not chord (allow broken) |
| (ii) | $y=-27$ | B1 |  |
| (f) | Ruled lines $x=-3, x=-2, y=40$ <br> Region enclosed by lines $x=-3$, $x=-2, y=40$ and $y=\mathrm{g}(x)$ | B1 <br> B1 | Long enough to be boundary of region - allow broken or solid ruled lines <br> Allow any clear indication |


| 7 (a) (i) | $\frac{60}{360} \times \pi \times 2 \times 24 \text { oe }$ <br> 25.1 ( 25.12 to 25.14) www2 | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | Accept $8 \pi$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\frac{60}{360} \times \pi \times 24^{2} \text { oe }$ <br> 301 or 302 or 301.4 to 301.7 www2 | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | Accept $96 \pi$ |
| (b) (i) | $\begin{aligned} & \pi d=\text { their }(\mathbf{a})(\mathbf{i}) \text { oe } \\ & \mathbf{4 ( 3 . 9 9 - 4 . 0 1 )} \text { cao www2 } \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ |  |
| (ii) | $24^{2}-$ (their radius) $^{2}$ <br> 23.7 (23.66 to 23.67) cao www2 | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | Alt trig method for $h$ explicit Accept $\sqrt{560}, 2 \sqrt{140}, 4 \sqrt{35}$ |
| (iii) | $\frac{1}{3} \times \pi \times(\text { their } r)^{2} \times(\text { their } h)$ <br> 394-398 cao www2 | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Not for $h=24$ |
| (c) (i) | 27W | B1 |  |
| (ii) | $4 W$ | B1 | If B0, B0 in (c), SC1 for 27 and 4 alone |


| 8 (a) | $5.5<t \leqslant 6$ | B1 | Condone poor notation |
| :---: | :---: | :---: | :---: |
| (b) | $\begin{aligned} & 4.25,4.75,5.25,5.75,6.25,6.75 \\ & (2 \times 4.25+7 \times 4.75+8 \times 5.25+18 \times 5.75 \\ & +10 \times 6.25+5 \times 6.75) \quad(=283.5) \\ & \div 50 \text { or their } \sum f \\ & \mathbf{5 . 6 7} \text { www4 } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | At least 5 correct mid-values seen <br> $\sum f x$ where $x$ is in the correct interval allow one further slip <br> Depend on second method <br> After M3 allow 5.7 <br> isw conversion to mins/secs and reference to classes |
| (c) (i) | 17, 15 | B1 |  |
| (ii) | Rectangular bars of heights $\mathbf{1 1 . 3}$ and 15 <br> Correct widths of 1.5 and 1 - no gaps | B1ft B1ft <br> B1 | ft their 17 divided by 1.5 <br> ft their 15 <br> 11.3 plot between 11 and 12 include lines and 15 to be touching the 15 line |
| (iii) | 2.5 cao | B1 | [10] |


| 9 (a) | $\begin{aligned} & 3(m-3)+4(m+4)=-7 \times 12 \\ & 3 m-9+4 m+16=-84 \end{aligned}$ <br> -13 www4 | M2 <br> A1 <br> A1 | Allow all over 12 at this stage M1 for $3(m-3)+4(m+4)$ seen Allow all over 12 at this stage May be seen in stages |
| :---: | :---: | :---: | :---: |
| (b) (i) | 0.5 oe | B1 |  |
| (ii) | $\begin{aligned} & \frac{3(x+3)-2(x-1)}{(x-1)(x+3)} \\ & \frac{x+11}{(x-1)(x+3)} \text { final answer } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | If brackets not seen allow $3 x+9-2 x \pm 2$ as numerator with a correct denominator isw incorrect expansion of denominator if correct brackets seen |
| (iii) | $\frac{x(x+11)}{(x-1)(x+3)}=1 \quad \mathrm{ft}$ or $x+11=\frac{1}{x}(x-1)(x+3)$ or better ft $\begin{aligned} & x^{2}+11 x=x^{2}+3 x-x-3 \\ & -\frac{1}{3} \text { oe cso www3 } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Must clear one denominator correctly Ft their (b)(ii) dep on fraction in (ii) with $(x-1)(x+3)$ oe as denominator <br> Depend on previous M1 $-0.33(33 \ldots)$ |
| (c) | $\begin{aligned} & p(q-1)=t \text { oe } \\ & p q=t+p \\ & \frac{t+p}{p} \text { oe final answer www3 } \end{aligned}$ | M1 <br> M1 <br> M1 | Multiplying by $(q-1)$ <br> Ft their first step <br> e.g. $p q$ only term on one side <br> Ft their $2^{\text {nd }}$ step <br> e.g. dividing by $p$ <br> Note: $q-1=\frac{t}{p}$ is M2 and then $q=\frac{t}{p}+1$ is M1 |


| $\mathbf{1 0}$ (a) | $21+23+25+27+29=125$ <br> $31+33+35+37+39+41=216$ | B1 <br> B1 |  |  |
| :--- | :--- | :---: | :--- | :--- |
| (b) | Cubes | $\mathbf{B 1}$ |  |  |
| (c) (i) | $n$ oe | B1 |  |  |
| (ii) | $n^{3}$ oe | B1 |  |  |
| (d) | $4^{2}-4+1=13$ www | E1 | Allow 16 for $4^{2}$, otherwise all must be seen |  |
| (e) | $7 \times 43+2+4+6+8+10+12$ | B1 | All must be seen |  |
| (f) | $n(n-1)$ final answer oe | B1 |  |  |
| (g) | $n\left(n^{2}-n+1\right)+$ their $(\mathbf{f})$ <br> $n^{3}-n^{2}+n+n^{2}-n=n^{3}$ | M1 <br> E1 | All must be seen, no errors or omissions | [10] |

