CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER
\square

MATHEMATICS

0580/11
Paper 1 (Core)
May/June 2010
1 hour
Candidates answer on the Question Paper.
Additional Materials: Electronic Calculator
Mathematical tables (optional)
Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 .
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 56 .

1 A ferry to Crete leaves at 0730.
The journey takes 2 hours and 48 minutes.
Work out the time when the ferry arrives in Crete.

2 (a) Write the following in order, starting with the smallest.

$$
\frac{4}{9} \quad 41 \%
$$

Answer(a) \qquad < \qquad $<$
(b) Only one of the following statements is correct.

$$
\sin 30^{\circ} \neq 0.5 \quad 4^{2}>16 \quad 0.3<\frac{1}{3}
$$

Put a ring around the correct statement.

3 In a group of 35 students, 14 go to school by bus.
Write down the probability that a student, chosen at random, does not go to school by bus.
Give your answer as a fraction in its lowest terms.

Answer

4 Write down the equation of the line, parallel to $y=4 x+1$, which passes through the point $(0,-3)$.
est.

The bearing of P from M is 107°.
Work out the bearing of M from P.

Answer

6 Martin recorded the outside temperature every three hours.
At 0700 the temperature was $-2^{\circ} \mathrm{C}$.
(a) This was $5^{\circ} \mathrm{C}$ higher than the temperature at 0400 .

Write down the temperature at 0400 .
(b) At 1000 the temperature was $11^{\circ} \mathrm{C}$.

Write down the increase in temperature between 0700 and 1000 .

Answer(b)
${ }^{\circ} \mathrm{C} \quad[1]$

7 In a sale, the price of a car was reduced from \$ 17000 to $\$ 15300$.
Calculate the reduction as a percentage of the original price.

The lengths, in centimetres, of the sides of a triangle are $x, x+3$ and $2 x-7$. The perimeter of the triangle is 52 cm .
(a) Use this information to write down an equation in x.

> Answer(a)
(b) Find the value of x.

$$
\operatorname{Answer}(b) x=
$$

9 The area of a circle is $19.7 \mathrm{~cm}^{2}$.
Calculate the radius of the circle.

10 Simplify
(a) $p^{3} \times p^{4}$,
Answer(a)
(b) $12 q^{8} \div 3 q^{2}$.

> Answer(b)

The diagram shows part of a regular polygon.
Each interior angle of the polygon is 160°.
Calculate the number of sides of the polygon.

Answer

12 Write down the value of
(a) 10^{-2},
(b) 4^{0},

> Answer(b)
(c) $\sqrt[3]{343}$.

> Answer(c)

13 Solve the simultaneous equations.

$$
\begin{gathered}
2 x-y=9 \\
7 x+2 y=26
\end{gathered}
$$

$$
\begin{array}{r}
\text { Answer } x= \\
y=
\end{array}
$$

NOT TO
SCALE
A, B and C lie on a circle, centre $O . B C$ is a diameter and $S C T$ is a tangent at C. Angle $A C B=54^{\circ}$.
Find
(a) angle $B C T$,

$$
\text { Answer(a) Angle } B C T=
$$

(b) angle $C O A$,

$$
\begin{equation*}
\text { Answer(b) Angle } C O A= \tag{1}
\end{equation*}
$$

(c) angle $C A B$,

$$
\begin{equation*}
\text { Answer(c) Angle } C A B= \tag{1}
\end{equation*}
$$

(d) angle $A B C$.

$$
\begin{equation*}
\text { Answer(d) Angle } A B C= \tag{1}
\end{equation*}
$$

15

$$
\mathbf{d}=\binom{3}{-5} \quad \mathbf{e}=\binom{-1}{4} \quad \mathbf{f}=\binom{0}{7}
$$

Calculate
(a) $\mathbf{d}-\mathbf{e}$,

$$
\begin{equation*}
\operatorname{Answer}(a) \quad(\quad) \tag{2}
\end{equation*}
$$

(b) $4 f$.

$$
\operatorname{Answer}(b) \quad(\quad)
$$

16 Complete the information about each shape.

	\ldots	
	$\ldots . ~$	$\ldots . ~$

17

(a) The travel graph shows the journey of a bus from a port to a city.

Calculate the average speed of the bus
(i) in kilometres per minute,

Answer(a)(i) \qquad $\mathrm{km} /$ min
(ii) in kilometres per hour.

Answer(a)(ii)
km/h
(b) The bus waits in the city for 20 minutes and then returns to the port at an average speed

Complete the travel graph.

Questions 18 and 19 are printed on the next page.

的
(ii) in kilometres per hour.
\qquad

of $12 \mathrm{~km} / \mathrm{h}$.

18 (a) Factorise $3 y^{2}-7 x y$.
Answer(a)
[1]
(b) Expand the brackets and simplify completely.

$$
p(4 p+5 r)+2 r(6 p+r)
$$

19 Erica is tiling the floor of a rectangular room of length 3 metres and width 2.5 metres. She uses square tiles of side 25 centimetres.
(a) Calculate
(i) how many tiles will fit along the length of the room,
Answer(a)(i)
(ii) how many tiles she will need altogether.
Answer(a)(ii)
(b) Work out the area of one tile
(i) in square centimetres,

$$
\text { Answer(b)(i) } \mathrm{cm}^{2}
$$

(ii) in square metres.

$$
\text { Answer(b)(ii) } \mathrm{m}^{2}
$$

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

