MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0580 MATHEMATICS

0580/13
Paper 1 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	13

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working

Qu.	Answers	Mark	Part Marks
1	Pyramid	1	
2	1, 4, 25, 100	2	B1 for any two and none incorrect. -1 each incorrect
3	(a) 2 (b) 2		
4	(a) 41 or -41 (b) -7	1	
5	$2 x^{2}+x y$ final answer	2	B1 for $2 x^{2}$ or $x y$ seen in working
6	5.5	2	M1 for $2 x+1=3 \times 4$ or better or $\frac{2 x}{3}=4-\frac{1}{3}$
7	6.489	2	B1 for 6.5 or 6.49 or 6.4891...
8	35	2	M1 for $45 \div(7+2)$ SC1 for answer $=10$
9	46.4	2	M1 for 32×1.45 oe or B1 for answer of 14.4
10	$\frac{3}{16}$	2	B1 for $\frac{1875}{10000}$ or any equivalent fraction.
11	$3 a(c-2 d)$	2	B1 for $a(3 c-6 d)$ or $3(a c-2 a d)$ or $3 a(j c-k d)$ where j and k are non-zero.
12	$\frac{8}{27}$	2	M1 for $1 \div\left(1 \frac{1}{2}\right)^{3}$ oe or SC1 for $\frac{27}{8}$
13	$(x=) 2,(y=)-1$	2	M1 for correct method for eliminating one variable. Subtract or multiply by 3 and 5, then subtract

14	(a) 17 (b) $\sqrt{ } 17$ or $4.12(\ldots$.) (c) 0.294	1	
15	212.18 final answer cao	3	M2 for 200×1.03^{2} oe or M1 for $(200 \times 1.03) \times 0.03$ oe
16	(a) 90 (b) 45 (c) 45	1 1 ft 1ft	$\begin{aligned} & \mathrm{ft} \frac{1}{2}(180-\text { their (a) }) \\ & \mathrm{ft} 90-\text { their (b) } \end{aligned}$
17	(a) $(7+2) \times 9$ (b) $36 \div(6 \div 2)=12$ (c) $5 \times(3+6) \times 2=90$	1 1	
18	(a) (i) $\binom{4}{5}$ (ii) $\binom{2}{-2}$ (b) $(\mathbf{A C})+(\mathbf{C B})=(\mathbf{A B})$	1	
19	$(y=)-\frac{1}{3} x+2 \text { cao }$	3	B1 for gradient of $\pm \frac{1}{3}$ oe (Allow ± 0.33 or better) B1 ind for $m x+2$ where $m \neq 0$.
20	(a) (i) 4 (ii) $\frac{4}{5}$ oe (iii) $\frac{2}{5}$ oe (b) $\frac{2}{4}$ oe	1 1 1	
21	$\begin{aligned} & (\text { Mode }=) 0 \\ & (\text { Median }=) 2 \\ & (\text { Mean }=) 2.7 \end{aligned}$	1 1 2	$\mathbf{M 1}(0+0+0)+1+2+2+4+4+5+9$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	13

22
(a) Lines connecting (08 00, home) to (08 10, shop)
(their 0810 , shop) to (their 0815 , shop)
(their 0815 , shop) to (08 30, school)
(b) 1.65

3
B1 home to shop
B1ft horizontal and 5 minute period

B1ft for line to 0830 and school

M1 for use of speed \times time
SC1 for 1.375 or 1.376 to 1.38

