

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

Paper 2 (Extended) SPECIMEN MARK SCHEME 0580/02 For Examination from 2015

1 hour 30 minutes

MAXIMUM MARK: 70

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 4 printed pages.

Types of mark

- **M** marks are given for a correct method.
- A marks are given for an accurate answer following a correct method.
- **B** marks are given for a correct statement or step.
- **D** marks are given for a clear and appropriately accurate drawing.
- **P** marks are given for accurate plotting of points.
- **E** marks are given for correctly explaining or establishing a given result.
- **SC** marks are given for special cases that are worthy of some credit.

Abbreviations

- cao correct answer only
- cso correct solution only
- dep dependent
- ft follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- www without wrong working
- art anything rounding to
- soi seen or implied

Qu.	Answers	Mark	Part Marks
1	7.5(0) cao	2	M1 for $\frac{258.75}{4.6}$
2	3×10^{27}	2	M1 for $6 \div (2 \times 10^{-27})$
3	cos38 sin38 sin158 cos158	2	M1 correct decimals seen 0.7(88) 0.6(15) 0.3(74) -0.9(271)
4	$\frac{41}{333}$	3	B2 for $\frac{123}{999}$ oe fraction or M1 for $1000[x] = 123.123$ oe
5	(a) 7853 to 7855 or 7850 or 7860 www	2	M1 for $\pi \times 50^2$
	(b) 0.7853 to 0.7855 or 0.785 or 0.786	1ft	Their (a) \div 10 000 evaluated
6	135 cao	3	M1 for 720 or $(6-2) \times 180$ oe seen in working and M1 for equation $180 + 4x =$ their 720 or M1 for $(360 - 180) \div 4 (= 45)$ oe seen in working and M1 dep for 180 – their 45
7	(a) $(y =) 80$	1	
	(b) $(z =) 40$	1	
	(c) $(t=)$ 10	1ft	Follow through $90 - \text{their } y \text{ or } 50 - \text{their } z$

8	$y = -\frac{1}{2}x + 10$ oe	3	M2 for $-\frac{1}{2}x + 10$
			or M1 for gradient identified as $-\frac{1}{2}$
			or intercept as 10 (not on diagram) e.g. $y = mx + 10$ or
			$y = -\frac{1}{2}x + c$
9	(a) Correct perpendicular bisector with arcs	2	B1 correct line B1 correct construction arcs
	(b) 60°	1	
10	0.38 or $\frac{19}{50}$	4	B1 0.8, 0.6 or 0.55 then M1 0.45 × their 0.6 M1 0.2 × their 0.55 or M2 1 – (0.45 × 0.4 + 0.55 × their 0.8)
11	$ (a) \begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix} $	2	B1 two or three entries correct
	(b) $\begin{pmatrix} 1\frac{1}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix}$ oe	2	$\mathbf{B1}\frac{1}{2}\begin{pmatrix}a&c\\b&d\end{pmatrix}\mathbf{B1}\begin{pmatrix}k\\-4&2\end{pmatrix}$
12	(a) Negative	1	Ignore embellishments
	(b) Correct point	1	
	(c) (i) Accurate ruled line	1	
	(ii) English mark	1ft	Follow through their (c)(i)
13	(a) $\frac{1}{2}$ a + $\frac{1}{2}$ b oe	2	M1 unsimplified or any correct route
			e.g $\mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$ or $\mathbf{OA} + \mathbf{AC}$
	(b) $-1\frac{1}{2}\mathbf{a} + 1\frac{1}{2}\mathbf{b}$ oe	2	M1 unsimplified or any correct route
			e.g. CD = $1\frac{1}{2}$ AB or b - a + $\frac{1}{2}$ (b - a)
14	(a) 2.84	2	M1 correct substitution of g and ℓ seen
	(b) $\frac{4\pi^2\ell}{T^2}$ oe	3	M1 each correct move but third move marked on answer line
15	(a) 156	4	M1 intention to find area under graph B2 completely correct area statement or B1 two areas found correctly (or one trapezium area)
	(b) 12	1ft	Their (a)/13

16	(a)	500 405 364 365 295 ()	2	B 2
10	(a)	500, 405, 504-505, 295 ()	2	D2
	(b)	5 points plotted within correct square	1	P1 ft from table
			1	C1
		points plotted	1	CI
	(c)	(i) 3.3–3.4	1	B1 ft from their curve or line reading at 350 g
		(ii) Never oe	1	
17	(a)	$\frac{1}{2}$	2	B1 f(-2) seen
	(b)	$\sqrt[3]{(x-1)}$ or $\sqrt[3]{x-1}$	2	M1 $x - 1 = y^3$ or $\sqrt[3]{(y-1)}$
	(c)	1 2	3	M2 $(x-1)(x-2) = 0$
				or M1 $(x + a)(x + b) = 0$ where
				ab = 2 or a + b = -3
				If 0 scored give M1 for $x^2 - 3x + 2 = 0$
18	(a)	4324 cao	2	$\mathbf{M1} \frac{1}{6} \times 23 \times 24 \times 47$ or better
	(b)	(i) 4, 9	2	B1 either correct
		(ii) $(n+1)^2$ or $n^2 + 2n + 1$	1	
	(c)	$\frac{2}{3}n(n+1)(2n+1)$ oe	2	M1 recognising $V_n = 4T_n$