

www.xiremepabers.com

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/01

CHEMISTRY

(Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	1

Question Number	Key	Question Number	Key
1	С	21	В
2	В	22	D
3	Α	23	Α
4	D	24	В
5	Α	25	D
6	С	26	В
7	Α	27	D
8	Α	28	D
9	В	29	D
10	С	30	В
11	В	31	D
12	D	32	D
13	С	33	Α
14	D	34	Α
15	В	35	В
16	С	36	Α
17	Α	37	Α
18	С	38	В
19	Α	39	С
20	С	40	С

TOTAL 40

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/02

CHEMISTRY

(Core Paper 2)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	2

1	(a)	(i) (ii) (iii) (iv) (v) (v)	Fe/Cu ALLOW Zn C/N/S/F/C1/Br O/S C Li/Na/K ALLOW F CU/Zn/Br/Kr	[1] [1] [1] [1] [1]
	(b)		argon - light bulbs; chlorine - kills bacteria; carbon - as lubricant; helium - in balloons	[4]
	(c)	(i) (ii) (iii)	covalent BrF ₅ ALLOW F ₅ Br ions/charged particles; NOT: particles not free to move in solid/free to move in molten/liquid state	[1] [1]
2	(a)		drop small tube in acid/loosen string/idea of mixing zinc and acid/let go of cotton ALLOW: cut the string NOT: heat (the acid) NOT: pull the string	[1]
	(b)	(i) (ii) (iii)	correct plotting including 0-0 point (_1 per omission or error) best curve drawn and to go through origin no more gas produced/reaction finished; all zinc reacted/used up	[2] [1] [2]
	(c)		graph drawn with faster initial rate and starting at 0-0; ALLOW: straight line as initial rate ends up at 55 cm ³	[2]
	(d)	(i) (ii) (iii)	2 (HC <i>I</i>) zinc chloride 136 IGNORE units	[1] [1] [1]
	(e)		substance containing only one type of atom/substance which cannot be broken down to any other substance by <u>chemical means</u> NOT 'can't be split' alone NOT is a pure substance	[1]
3	(a)	(i) (ii)	evaporation/vaporisation/boiling freezing/solidification NOT: fusion	[1] [1]
		(iii)	condensing/condensation/liquefaction	[1]
	(b)		2 nd box ticked	[1]
	(c)		A; energy needed to overcome forces between molecules/idea of energy input/taking in heat	[2]
	(d)	(i) (ii) (iii)	chlorine bromine sodium chloride	[1] [1] [1]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	2

	(e)	(i)	diffusion NOT: Brownian motion	[1]
		(ii)	ammonium chloride NOT: ammonia chloride	[1]
		(iii)	ammonia diffuses or moves faster/HCl diffuses or moves slower/ammonia has lower mass/HCl higher mass/molecules of HCl and ammonia move at different speeds NOT: ammonia evaporates faster/HCl evaporates more slowly	[1]
	(f)		neutralisation/acid base NOT: exothermic NOT: addition	[1]
	(g)	(i) (ii)	thermometer reference to the solid or melting point of the solid is needed for the mark. boiling point of water too low to get solid to melt/boiling water cannot get to	[1]
			155°C NOT: boiling point of water is only 100°C/boiling point of water too low. NOT: water boils off first	[1]
		(iii)	so that the liquid is the same temperature throughout/no hot or cold spots/so the tube is the same temperature as the thermometer/so heat can circulate in all places ALLOW: so that temperature of liquid is balanced NOT: to keep temperature constant	[1]
4	(a)	(i) (ii)	breaking down of molecules substances using heat substance which speeds up a reaction NOT: alters/changes rate of reaction NOT: speeds up and slows down rate	[1] [1]
	(b)		ethene/ethylene NOT: formula	[1]
	(c)	(i) (ii)	paraffin 4000g/4kg	[1] [1]
		(iii)	(correct unit needed) C_2H_4 ; H_2	[2]
	(d)	(i)	two units polymerised with continuation bonds at either end and hydrogen atoms drawn $ \begin{array}{lllllllllllllllllllllllllllllllllll$	[1]
		(ii)	addition (polymerisation)	[1]
5	(a)		(sodium) hydroxide/ammonia; → green/grey green; silver nitrate; → yellow; ALLOW: lead nitrate NOT: cream	[2] [2]
			ALLOW: bubble chlorine → grey/black (precipitate) silver nitrate; → white: barium chloride/nitrate; → white; ALLOW: lead acetate	[2] [2]

Page 3			Mark Scheme	Syllabus	Paper
			IGCSE EXAMINATIONS – June 2003	0620	2
(b)		be pre NOT: o sodium NOT: d evapo	on/filtering or diagram of correct apparatus for filtration (esent on diagram) decanting in chloride through filter paper/shown on diagram; filtrate through filter paper rate off water from sodium chloride/suitable diagram W: distilling off water	filter paper	must
(c)		(chem (refere	nt atoms/elements ically) joined/bonded/combined (both points needed) ence to mixtures = 0 unless qualified enough in time fran ments which are then chemically combined)	ne e.g. a mi	xture [1]
(d)	(i) (ii)	chlorin sodiun			[1] [1]
(a)		potass	sium/magnesium/aluminium		[1]
(b)		metal	lid not have electricity/did not know about electrolysis/o existed did not have the right technology	did not knov	v the [1]
(c)	(i)	faster OR nu	tion that bubbles produced rapidly or quickly/slower than than zinc Imber of bubbles produced intermediate between magne m dissolved slower than magnesium but faster than	sium and zi	nc; [1]
		mediu	m rate etc.		[1]
	(ii)		of same element with different mass number/diffe	erent numb	er of [1]
	(iii)	indicat ALLO\ NOT:	compounds/molecules with different mass number tion of use for energy – nuclear power stations/nuclear en W: atomic/nuclear bombs curing cancer/medical uses 'for fuel'	nergy	[1]
(d)		_	esium oxide W: MgO		[1]
(e)	(i)	idea o	f mixture of (different) metals		[1]
, ,	(ii)	alloys corros NOT: i	harder/stronger/decreased malleability/increased toughn ion resistance/heat or electrical resistance increased increase in melting point cheaper improving properties	ess/increas	
(f)			res oxygen from zinc oxide W: definition of reduction involving oxidation numbers/ele	ectron transf	[1] er
(g)	(i)		ible reaction		[1]
	(ii)	76-80°	W: equilibrium %		[1]
(h)	(i) (ii)	loses t	t electronic structure of Mg (2.8.2) on diagram two electrons/loses its valence electrons = 2		[1]
		loses e	Mg ²⁺ ion = 1 electron(s) = 1 Mg ²⁺ ion by losing electrons = 2		[2]

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY

(Extended Paper 3)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark.

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

(a)					[2]
(b)	(i) (ii)	(higher in furnace)	no oxyger	n left	[1] [1] [1]
		OR incomplete con	mbustion o	of carbon	[2]
		OR carbon dioxide with carbon	e reacts		[1] [1]
(c)			_	on (IV) oxide \rightarrow calcium silicate (+ carbon dioxide)	[2]
		For knowing that in	mpurity is s	sand [1] ONLY	
		Accept calcium ox Accept lime	ide and sili	icon oxide	
(d)	(i) (ii) (iii)	cars or sinks or ainickel or chromium blow air/oxygen the carbon becomes carbon dioxide escilicon and phosphicalcium oxide or carbon dioxide or carbon	rcraft or gan or molyb rough carbon diox capes as ganorus beco	arden tools denum or niobium or titanium xide as me oxides	[1] [1]
		Any FOUR		NOT blast furnace	[4]
(e)		tin salt or tin ions a	as electroly		[1] [1] [1]
	(b)	(b) (i) (ii) (d) (i) (iii) (iii)	(b) (i) C + O₂ → CO (higher in furnace) carbon dioxide real carbon dioxide real carbon dioxide real carbon dioxide real carbon dioxide with carbon (c) C C C C C C C C C C C C C C C C C C C	 (b) (i) C + O₂ → CO₂ NOT w (higher in furnace) no oxyger carbon dioxide reacts with carbon dioxide reacts with carbon dioxide reacts with carbon (c) Carbon dioxide reacts with carbon dioxide reacts with carbon (d) (i) Cutlery or chemical plant or cars or sinks or aircraft or garbon dioxide escapes as garbon dioxide escapes as garbon dioxide escapes as garbon dioxide or carbon dioxide or carbon dioxide or carbon dioxide or carbon dioxide escapes as garbon dioxide or carbon dioxide or	 (b) (i) C + O₂ → CO₂ NOT word equation (higher in furnace) no oxygen left carbon dioxide reacts with carbon (to give carbon monoxide) OR incomplete combustion of carbon OR either equation gains both marks CO₂ + C = 2CO or 2C + O₂ = 2CO OR carbon dioxide reacts with carbon (c) limestone + sand → slag OR calcium carbonate + silicon (IV) oxide → calcium silicate (+ carbon dioxide) For knowing that impurity is sand [1] ONLY Accept calcium oxide and silicon oxide Accept lime (d) (i) Cutlery or chemical plant or watches or utensils or surgical instruments or cars or sinks or aircraft or garden tools inckel or chromium or molybdenum or niobium or titanium (iii) blow air/oxygen through carbon becomes carbon dioxide carbon dioxide escapes as gas silicon and phosphorus become oxides calcium oxide or calcium carbonate forms slag Any FOUR NOT impure time

TOTAL = 16

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

2	(a)	(i) (ii)	3 ignore any charges high melting or boiling point hard	[1]
			poor conductor of electricity or heat brittle	
			Any TWO	[2]
		(iii)	NOT insoluble, dull, or malleable carbon, graphite diamond silicon, germanium	[1]
		` ,	silicon (IV) oxide or silica or silicon dioxide or silicon oxide	
		(iv)	or sand or silicon carbide or named polymer four around one	[1] [1]
			cond looks tetrahedral or shows continuation For graphite layers [1] weak bonds between layers [1]	[1]
			Accept any macromolecule, no link with (iii) For polymer repeat unit [1] continuation [1]	
	(b)	(i)	white precipitate COND upon a precipitate	[1]
		/ii\	dissolves in excess or forms solution	[1]
		(ii)	blue precipitate COND upon a precipitate	[1]
			does not dissolve in excess	[1]
	(c)	(i)	number of moles $CO_2 = 0.24/24 = 0.01$	
			conseq number of moles of CaCO ₃ and MgCO ₃ = 0.01 conseq number of moles of CaCO ₃ = 0.005	[3]
		(ii)	Calculate the volume of hydrochloric acid, 1.0 mole/dm ³ , needed to react with one tablet.	
			number of moles of CaCO ₃ and MgCO ₃ in one tablet = 0.01	
			Expect same as answer to (c)(i). NO marks to be awarded. Just mark consequentially to this response	
			conseq number of moles of HC <i>l</i> needed to react with one tablet = 0.02	[1]
				ניו
			conseq volume of hydrochloric acid, 1.0 mole/dm ³ , needed to react with one tablet = 0.02 dm ³ or 20 cm ³	[1]
			TOTA	L = 16
_				
3	(a)	(i)	Correct equation For giving correct formula of alkane and alkene [1] only	[2]
		/ii\	Accept alkene and hydrogen chlorine	[4]
		(ii)	COND light or 200°C or heat or lead tetraethyl	[1]
			or high temperature MAX 1000°C ignore comment 'catalyst'	[1]
	(b)	/i\	same molecular formula	[4]
	(b)		different structures or structural formulae	[1] [1]
		(ii)	but- <u>2</u> -ene or cyclobutane corresponding structural formula	[1] [1]
			NOT 2-butene	Γ.1
	(c)		butanol ignore numbers	[1]
			butane ignore numbers dibromobutane ignore numbers	[1] [1]
				r.1

	(d)	(i)	propene	[1]
			CH_3 — $CH==CH_2$	[1]
		(ii)	Correct structure of repeat unit ignore point of attachment of ester group COND upon repeat unit	[1]
		(iii)	shows continuation If chain through ester group [0] out of [2] do not decay or non-biodegradable shortage of sites or amount of waste per year	[1]
		(iv)	visual pollution forms methane Any TWO form poisonous or toxic gases or named gas CO, HC <i>l</i> HCN	[2] [1]
			NOT carbon dioxide, harmful, sulphur dioxide	TOTAL - 40
_				TOTAL = 18
4	(a)	(i)	Correct equation not balanced [1] ONLY $2Pb(NO_3)_2 = 2PbO + 4NO_2 + O_2$	[2]
			$Pb(NO_3)_2 = PO + 2 NO_2 + \frac{1}{2} O_2$	
		(ii)	potassium nitrate → potassium nitrite + oxygen	[1]
	(b)	(i)	close or tightly packed ordered or lattice vibrational	[1] [1] [1]
		(ii)	NOT forces melting or freezing or fusion or solidification	[1]
	(c)	(i)	oxygen and nitrogen (in air) react at high temperatures (and high pressure) If nitrogen in fuel [0] out of [2]	[1] [1]
		(ii)	catalytic converter react with carbon monoxide or hydrocarbons form nitrogen	
			ANY TWO	[2]
	(d)		Add excess lead oxide to nitric acid can imply excess	[1]
			filter NOT if residue is lead nitrate evaporate or heat solution	[1] [1]
				TOTAL = 14
5	(a)		protons 2 electrons 2	
			neutrons 4	[3]
	(b)		La ³⁺ + 3e- = La	[1]
		(ii)	hydrogen bromine NOT Bromide caesium hydroxide ignore any comments about electrodes	[1] [1] [1]

Mark Scheme IGCSE EXAMINATIONS – June 2003

Page 3

Syllabus 0620 Paper 3

(c)	metal hydroxide or hydroxide ions hydrogen	[1] [1]
(d)	correct formula 1Ba to 2C <i>l</i> charges correct 8e around the anion All three points Two points ONLY [1] If covalent [0] out [2]	[2]
(e)	alternating (positive and negative) pattern	[1] [1]
(f) (i) (ii)	barium - oxygen or ionic bond forming energy released/exothermic bond breaking energy taken in/endothermic more energy released	[1] [1] [1] [1]

Mark Scheme
IGCSE EXAMINATIONS – June 2003

Page 4

TOTAL = 17

Total for Paper: 80

Syllabus 0620 Paper 3

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/05

CHEMISTRY

(Practical)

Page 1			Mark So			Syllabus	Paper		
				IGC	SE EXAMINATI	ONS – June	e 2003	0620	5
1				of results iment 1	Initial and fina	_	recorded 1 decimal place		[1] [1]
			Exper	iment 2	Initial and fina	_	recorded 1 decimal place		[1] [1]
			Result	ts comparable	to Supervisor's	results ± 1	cm ³		[2]
	(a)		red/bu	urgundy/brown					[1]
	(b)		•	/ (1) to blue/bla RE green	ick (1)	see Supe	ervisor		[2]
	(c)	(i) (ii) (iii) (iv)	△ 2 x, potass not dif 2 x vo	sium iodate les fferent concent		solution C	than B or vice ve	ersa	[1] [2] [1] [2] [1]
	(d)			tor (1) referend st for I ₂ /I [–]	ce to accuracy	(1)/end-poi	nt/see more clea	•	[2] n total: 18]
2	(a)		bubble	es/condensatio	on/goes black			max 2	[2]
	(b)			e - colourless <u>r</u> ie - green	<u>not</u> clear				[1] [1]
	(c)	(i) (ii)	limewa solution blue (escence/fizz/bi ater → milky on is blue 1) precipitate (deep blue (1) s	1)				[1] [1] [1] [2] [2]
	(d)	(i) (ii) (iii)	white		(1) dissolves in (1) dissolves (1)		[3] [3] [1]
	(e)		zinc (1	1) sulphate (1)		re	versed = 0		[2]
	(f)			er (1) carbonate ted (1)	e (1)	reversed	= 0	max 2	[2]
								[Question	n total: 22]
								[Total for	paper: 40]
			Result	ts obtained for	Question 1/cm	3			
				iment 1 iment 2	1 st 16.5 8.3		6.3 3.2		

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0620/06

CHEMISTRY

(Alternative to Practical)

Page 1	Mark Scheme		Paper
	IGCSE EXAMINATIONS – June 2003	0620	6

1	(a)		A = mortar (1) B = stirrer/stirring rod (1) C = tripod (1) D = Bunsen Burner (1)	not thermome	eter	[4]
	(b)		filtration			[1]
	(c)		D or description			[1]
2	(a)		because precipitate formed/goes clo sulphur (1)/turbid	udy (1)		[2]
	(b)		reference to fair test/comparison/san	ne depth		[1]
	(c)		sodium thiosulphate/water 1st/2nd aci	d, last		[1]
	(d)	(i)	all points correct (3), -1 for any incor smooth line (1) label (1)	rect		[5]
		(ii)	line lower down (1) does not touch other line (1)			[2]
	(e)		times would be longer (1) because s surface area/depth (1)	olution more s	pread out/reference to	[2]
3			Table of results correct burette readings in table (3) i.e. 16.8, 17.1 and 25. Differences correctly completed (1)	.5	or 17.2, 18.9, 26.5 Difference 7.6	
	(a)	(i) (ii) (iii) (iv)	i.e. 8.4 Experiment 1 twice volume/more than twice as mu Solution B was 2x (1) concentration B more concentrated than C (1 only) volume A = 33.6 (1) cm ³ (1)/34.4cm ³ 2x iodine produced (1)	of C (1) or sim	ilar	[4] [1] [1] [2]
	(b)		reference to accuracy (1) indicator ($\frac{1}{2}$ max 2	1)/easier to see	Э	[2]
4	(c)		effervescence/fizz/bubbles (1) limewater milky (1)/blue solution			[2]
	(d)	(ii)	blue (1) precipitate (1) royal/dark blue (1) solution (1)			[4]
	(e)	(i) (ii)	white (1) precipitate (1) dissolves (1) white (1) precipitate (1) dissolves (1)			[3] [3]
	(f)		Solid D is a sulphate (1) hydrated (1))		[2]
	(g)		copper (1)/Cu ²⁺ (2)			[2]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	6

5	(a) (i) (ii)	Smooth line graph result at 5 minutes (1) not on curve (1)/gas escapes, gone down	[1] [2]
	(b)	0.8 g	[1]
	(c)	reference to leak/loss of gas (1) ∴ volumes lower (1)	[2]
6		Known mass of beach sand (1) add excess (1) dilute hydrochloric acid (1) filter (1) wash (1) dry (1) residue and weigh sand (1) working out result (1) max 6 of 8	[6]

Grade thresholds taken for Syllabus 0620 (Chemistry) in the June 2003 examination

	maximum	minimum mark required for grade:			
	mark available A	А	С	E	F
Component 1	40	-	26	20	17
Component 2	80	-	52	36	27
Component 3	80	53	31	-	-
Component 5	40	31	24	18	14
Component 6	60	42	32	21	15

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.