CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/01
CHEMISTRY
(Multiple Choice)

Question Number	Key	Question Number	Key
1	C	21	B
2	B	22	D
3	A	23	A
4	D	24	B
5	A	25	D
6	C	26	B
7	A	27	D
8	A	28	D
9	B	29	D
10	C	30	B
11	B	31	D
12	D	32	D
13	C	33	A
14	D	34	A
15	B	35	B
		36	
16	C	37	A
17	A	38	A
18	C	39	C
19	A	40	C
20	C		

TOTAL 40

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/02
CHEMISTRY
(Core Paper 2)
(a) (i) $\mathrm{Fe} / \mathrm{Cu}$ ALLOW Zn
(ii) $\mathrm{C} / \mathrm{N} / \mathrm{S} / \mathrm{F} / \mathrm{C} / \mathrm{Br}$
(iii) O / S
(iv) C
(v) $\mathrm{Li} / \mathrm{Na} / \mathrm{K}$ ALLOW F
(vi) $\mathrm{CU} / \mathrm{Zn} / \mathrm{Br} / \mathrm{Kr}$
(b) argon - light bulbs; chlorine - kills bacteria; carbon - as lubricant; helium - in balloons
(c) (i) covalent
(ii) BrF_{5} ALLOW $\mathrm{F}_{5} \mathrm{Br}$
(iii) ions/charged particles;

NOT: particles
not free to move in solid/free to move in molten/liquid state
2 (a) drop small tube in acid/loosen string/idea of mixing zinc and acid/let go of cotton
ALLOW: cut the string
NOT: heat (the acid)
NOT: pull the string
(b) (i) correct plotting including 0-0 point (-1 per omission or error)
(ii) best curve drawn and to go through origin
(iii) no more gas produced/reaction finished;
all zinc reacted/used up
(c) graph drawn with faster initial rate and starting at 0-0;

ALLOW: straight line as initial rate
ends up at $55 \mathrm{~cm}^{3}$
(d) (i) $2(\mathrm{HCl})$
(ii) zinc chloride
(iii) 136

IGNORE units
(e) substance containing only one type of atom/substance which cannot be broken down to any other substance by chemical means
NOT 'can't be split' alone
NOT is a pure substance
3 (a) (i) evaporation/vaporisation/boiling
(ii) freezing/solidification

NOT: fusion
(iii) condensing/condensation/liquefaction
(b) $\quad 2^{\text {nd }}$ box ticked
(c) $\quad \mathrm{A}$;
energy needed to overcome forces between molecules/idea of energy input/ taking in heat
(d) (i) chlorine
(ii) bromine
(iii) sodium chloride
(e) (i) diffusion

NOT: Brownian motion
(ii) ammonium chloride

NOT: ammonia chloride
(iii) ammonia diffuses or moves faster/ HCl diffuses or moves slower/ammonia has lower mass $/ \mathrm{HCl}$ higher mass/molecules of HCl and ammonia move at different speeds
NOT: ammonia evaporates faster/ HCl evaporates more slowly
(f) neutralisation/acid base

NOT: exothermic
NOT: addition
(g) (i) thermometer
(ii) reference to the solid or melting point of the solid is needed for the mark. boiling point of water too low to get solid to melt/boiling water cannot get to $155^{\circ} \mathrm{C}$
NOT: boiling point of water is only $100^{\circ} \mathrm{C} /$ boiling point of water too low. NOT: water boils off first
(iii) so that the liquid is the same temperature throughout/no hot or cold spots/so the tube is the same temperature as the thermometer/so heat can circulate in all places
ALLOW: so that temperature of liquid is balanced
NOT: to keep temperature constant
4 (a) (i) breaking down of molecules substances using heat
(ii) substance which speeds up a reaction

NOT: alters/changes rate of reaction
NOT: speeds up and slows down rate
(b) ethene/ethylene

NOT: formula
(c) (i) paraffin
(ii) $4000 \mathrm{~g} / 4 \mathrm{~kg}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{4} ; \mathrm{H}_{2}$
(d) (i) two units polymerised with continuation bonds at either end and hydrogen atoms drawn
ALLOW: $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
ALLOW: - $\left[-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right]_{-n}$
ALLOW: $-\left[-\mathrm{CH}_{2}-\right]_{-n}$
(ii) addition (polymerisation)

5 (a) (sodium) hydroxide/ammonia; $\quad \rightarrow \quad$ green/grey green; [2] silver nitrate; $\quad \rightarrow \quad$ yellow;
ALLOW: lead nitrate NOT: cream
ALLOW: bubble chlorine $\quad \rightarrow \quad$ grey/black (precipitate)
silver nitrate; $\quad \rightarrow \quad$ white:
barium chloride/nitrate; $\quad \rightarrow \quad$ white; $[2]$
ALLOW: lead acetate

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - June 2003	0620	2

(b) filtration/filtering or diagram of correct apparatus for filtration (filter paper must be present on diagram)
NOT: decanting
sodium chloride through filter paper/shown on diagram;
NOT: filtrate through filter paper
evaporate off water from sodium chloride/suitable diagram
ALLOW: distilling off water
(c) different atoms/elements
(chemically) joined/bonded/combined (both points needed)
(reference to mixtures $=0$ unless qualified enough in time frame e.g. a mixture of elements which are then chemically combined)
(d) (i) chlorine $/ \mathrm{Cl}_{2}$
(ii) sodium $/ \mathrm{Na}$

6 (a) potassium/magnesium/aluminium
(b) they did not have electricity/did not know about electrolysis/did not know the metal existed
NOT: did not have the right technology
(c) (i) indication that bubbles produced rapidly or quickly/slower than magnesium but faster than zinc
OR number of bubbles produced intermediate between magnesium and zinc;
uranium dissolved slower than magnesium but faster than zinc/dissolves at medium rate etc.
(ii) atoms of same element with different mass number/different number of neutrons/different nucleon number
NOT: compounds/molecules with different mass number
(iii) indication of use for energy - nuclear power stations/nuclear energy

ALLOW: atomic/nuclear bombs
NOT: curing cancer/medical uses
NOT: 'for fuel'
(d) magnesium oxide

ALLOW: MgO
(e) (i) idea of mixture of (different) metals
(ii) alloys harder/stronger/decreased malleability/increased toughness/increased corrosion resistance/heat or electrical resistance increased
NOT: increase in melting point
NOT: cheaper
NOT: improving properties
(f) removes oxygen from zinc oxide

ALLOW: definition of reduction involving oxidation numbers/electron transfer
(g) (i) reversible reaction

ALLOW: equilibrium
(ii) $76-80 \%$
(h) (i) correct electronic structure of Mg (2.8.2) on diagram
(ii) loses two electrons/loses its valence electrons = 2
forms Mg^{2+} ion $=1$
loses electron(s) = 1

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03 CHEMISTRY
(Extended Paper 3)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - June 2003	0620	3

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.
(......) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.
or indicates different ways of gaining the same mark.
COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

1 (a) A correct equation either CO or CO_{2} as product
If not balanced but otherwise correct [1] ONLY
(b) (i) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ NOT word equation
(ii) (higher in furnace) no oxygen left
carbon dioxide reacts with carbon (to give carbon monoxide)
OR incomplete combustion of carbon
OR either equation gains both marks
$\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}$ or $2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO}$
OR carbon dioxide reacts
with carbon
(c) limestone + sand \rightarrow slag

OR calcium carbonate + silicon (IV) oxide \rightarrow calcium silicate (+ carbon dioxide)
For knowing that impurity is sand [1] ONLY
Accept calcium oxide and silicon oxide
Accept lime
(d) (i) Cutlery or chemical plant or watches or utensils or surgical instruments or cars or sinks or aircraft or garden tools
(ii) nickel or chromium or molybdenum or niobium or titanium
(iii) blow air/oxygen through
carbon becomes carbon dioxide
carbon dioxide escapes as gas
silicon and phosphorus become oxides
calcium oxide or calcium carbonate
forms slag
Any FOUR NOT blast furnace
(e) anode \quad tin [1]
cathode iron or steel
tin salt or tin ions as electrolyte
NOT oxide or hydroxide or carbonate

Paper
3

2 (a) (i) 3 ignore any charges
(ii) high melting or boiling point hard
poor conductor of electricity or heat brittle
Any TWO
NOT insoluble, dull, or malleable
(iii) carbon, graphite diamond silicon, germanium
silicon (IV) oxide or silica or silicon dioxide or silicon oxide
or sand or silicon carbide or named polymer
(iv) four around one
cond looks tetrahedral or shows continuation
For graphite layers [1] weak bonds between layers [1]
Accept any macromolecule, no link with (iii)
For polymer repeat unit [1] continuation [1]
(b) (i) white precipitate

COND upon a precipitate dissolves in excess or forms solution
(ii) blue precipitate

COND upon a precipitate
does not dissolve in excess
(c) (i) number of moles $\mathrm{CO}_{2}=0.24 / 24=0.01$
conseq number of moles of CaCO_{3} and $\mathrm{MgCO}_{3}=0.01$
conseq number of moles of $\mathrm{CaCO}_{3}=0.005$
(ii) Calculate the volume of hydrochloric acid, $1.0 \mathrm{~mole} / \mathrm{dm}^{3}$, needed to react with one tablet.
number of moles of CaCO_{3} and MgCO_{3} in one tablet $=0.01$
Expect same as answer to (c)(i). NO marks to be awarded. Just mark consequentially to this response
conseq number of moles of HCl needed
to react with one tablet $=0.02$
conseq volume of hydrochloric acid, $1.0 \mathrm{~mole} / \mathrm{dm}^{3}$, needed to react with one tablet $=0.02 \mathrm{dm}^{3}$ or $20 \mathrm{~cm}^{3}$

3 (a) (i) Correct equation
For giving correct formula of alkane and alkene [1] only
Accept alkene and hydrogen
(ii) chlorine

COND light or $200^{\circ} \mathrm{C}$ or heat or lead tetraethyl
or high temperature MAX $1000^{\circ} \mathrm{C}$
ignore comment 'catalyst'
(b) (i) same molecular formula
different structures or structural formulae
(ii) but-2-ene or cyclobutane
corresponding structural formula
NOT 2-butene
(c) butanol ignore numbers [1]
butane ignore numbers
dibromobutane ignore numbers
(d) (i) propene
$\mathrm{CH}_{3}-\mathrm{CH}==\mathrm{CH}_{2}$
(ii) Correct structure of repeat unit
ignore point of attachment of ester group
COND upon repeat unit
shows continuation
If chain through ester group [0] out of [2]
(iii) do not decay or non-biodegradable
shortage of sites or amount of waste per year
visual pollution
forms methane
Any TWO
(iv) form poisonous or toxic gases or named gas $\mathrm{CO}, \mathrm{HCl} \mathrm{HCN}$

NOT carbon dioxide, harmful, sulphur dioxide

4 (a) (i) Correct equation
not balanced [1] ONLY
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}=2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=\mathrm{PO}+2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
(ii) potassium nitrate \rightarrow potassium nitrite + oxygen
(b) (i) close or tightly packed
ordered or lattice [1]
vibrational
NOT forces
(ii) melting or freezing or fusion or solidification
(c) (i) oxygen and nitrogen (in air)
react at high temperatures (and high pressure)
If nitrogen in fuel [0] out of [2]
(ii) catalytic converter
react with carbon monoxide or hydrocarbons
form nitrogen
ANY TWO
(d) Add excess lead oxide to nitric acid
can imply excess
filter NOT if residue is lead nitrate
evaporate or heat solution

5 (a) protons 2
electrons 2
neutrons 4
(b) (i) $\mathrm{La}^{3+}+3 \mathrm{e}-=\mathrm{La}$
(ii) hydrogen
bromine NOT Bromide
caesium hydroxide
ignore any comments about electrodes

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - June 2003	0620	3

(c) metal hydroxide or hydroxide ions
hydrogen
(d) correct formula 1 Ba to 2 Cl charges correct 8 e around the anion
All three points
Two points ONLY [1] If covalent [0] out [2]
(e) alternating (positive and negative)
(f) (i) barium - oxygen or ionic
(ii) bond forming energy released/exothermic bond breaking energy taken in/endothermic
more energy released

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/05
CHEMISTRY
(Practical)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - June 2003	0620	5

Table of results
Experiment 1 Initial and final readings recorded
to 1 decimal place
Experiment $2 \quad$ Initial and final readings recorded [1]
to 1 decimal place
Results comparable to Supervisor's results $\pm 1 \mathrm{~cm}^{3}$
(a) red/burgundy/brown
(b) yellow (1) to blue/black (1)
see Supervisor
(c) (i) Experiment 1
(ii) $\wedge 2 x$, double volume (1) in Experiment 1 (1) not just more [2]
(iii) potassium iodate less concentrated solution \mathbf{C} than \mathbf{B} or vice versa
not different concentrations
(iv) $2 x$ volume from table for Experiment 1 (1) unit (1) [2]
$2 x$ iodine formed
(d) Indicator (1) reference to accuracy (1)/end-point/see more clearly
not test for $\mathrm{I}_{2} / \mathrm{I}^{-}$
[Question total: 18]
2 (a) bubbles/condensation/goes black max 2 [2]
(b) filtrate-colourless not clear
residue - green
(c) (i) effervescence/fizz/bubbles
limewater \rightarrow milky
solution is blue
(ii) blue (1) precipitate (1)
royal/deep blue (1) solution (1)
(d) (i) white (1) precipitate (1) dissolves in excess (1)
(ii) white (1) precipitate (1) dissolves (1)
(iii) white precipitate (1)
(e) \quad zinc (1) sulphate (1)

$$
\begin{equation*}
\text { reversed = } 0 \tag{2}
\end{equation*}
$$

(f) \quad copper (1) carbonate (1) reversed $=0$
hydrated (1)
$\max 2$

Results obtained for Question $1 / \mathrm{cm}^{3}$

	$1^{\text {st }}$	$2^{\text {nd }}$
Experiment 1	16.5	16.3
Experiment 2	8.3	8.2

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0620/06 CHEMISTRY
(Alternative to Practical)

1 (a) $\quad \mathbf{A}=$ mortar (1)
$B=$ stirrer/stirring rod (1) not thermometer
C = tripod (1)
D = Bunsen Burner (1)
(b) filtration
(c) D or description

2 (a) because precipitate formed/goes cloudy (1)
sulphur (1)/turbid
(b) reference to fair test/comparison/same depth
(c) sodium thiosulphate/water $1^{\text {st }} / 2^{\text {nd }}$ acid, last
(d) (i) all points correct (3), -1 for any incorrect
smooth line (1)
label (1)
(ii) line lower down (1)
does not touch other line (1)
(e) times would be longer (1) because solution more spread out/reference to surface area/depth (1)

Table of results
correct burette readings in table (3) or 17.2, 18.9, 26.5
i.e. 16.8, 17.1 and 25.5

Differences correctly completed (1)

$$
\text { i.e. } 8.4
$$

Difference 7.6
(a) (i) Experiment 1
(ii) twice volume/more than twice as much
(iii) Solution \mathbf{B} was $2 \times$ (1) concentration of \mathbf{C} (1) or similar

B more concentrated than C (1 only)
(iv) volume $\mathbf{A}=33.6(1) \mathrm{cm}^{3}(1) / 34.4 \mathrm{~cm}^{3}$
$2 x$ iodine produced (1)
(b) reference to accuracy (1) indicator (1)/easier to see
not test for $\mathrm{I}_{2} \quad \max 2$

4 (c) effervescence/fizz/bubbles (1)
limewater milky (1)/blue solution
(d) (ii) blue (1) precipitate (1)
royal/dark blue (1) solution (1)
(e) (i) white (1) precipitate (1)
dissolves (1)
(ii) white (1) precipitate (1)
dissolves (1)
(f) Solid D is a sulphate (1) hydrated (1)
(g) $\quad \operatorname{copper}(1) / \mathrm{Cu}^{2+}(2)$

5 (a) (i) Smooth line graph
(ii) result at 5 minutes (1)
not on curve (1)/gas escapes, gone down
(b) $\quad 0.8 \mathrm{~g}$
(c) reference to leak/loss of gas (1)
\therefore volumes lower (1)
$6 \quad$ Known mass of beach sand (1)
add excess (1) dilute hydrochloric acid (1)
filter (1) wash (1) dry (1) residue
and weigh sand (1) working out result (1)
max 6 of 8
[Total: 60]

Grade thresholds taken for Syllabus 0620 (Chemistry) in the June 2003 examination

	maximum	minimum mark required for grade:			
	mark available	A	C	E	F
Component 1	40	-	26	20	17
Component 2	80	-	52	36	27
Component 3	80	53	31	-	-
Component 5	40	31	24	18	14
Component 6	60	42	32	21	15

The threshold (minimum mark) for B is set halfway between those for Grades A and C.
The threshold (minimum mark) for D is set halfway between those for Grades C and E.
The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

