CANDIDATE NAME

CENTRE
CANDIDATE NUMBER
 NUMBER

PHYSICS

0625/52
Paper 5 Practical Test

October/November 2011
1 hour 15 minutes

Candidates answer on the Question Paper
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of the page.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
Total	

This document consists of $\mathbf{9}$ printed pages and $\mathbf{3}$ blank pages.

1 In this experiment, you will investigate the principle of moments.
Carry out the following instructions referring to Fig. 1.1.

Fig. 1.1
You are provided with a piece of modelling clay.
(a) Mould the piece of modelling clay into a cube shape. Place the modelling clay on the rule so that its centre is at a distance $d=10.0 \mathrm{~cm}$ from the zero end of the rule as shown in Fig.1.1.

Adjust the position of the rule so that it is as near as possible to being balanced, with the 50.0 cm mark to the right of the pivot.
(i) Measure the distance x from the centre of the modelling clay to the pivot.

$$
x=
$$

\qquad
(ii) Measure the distance y from the pivot to the 50.0 cm mark on the rule.

$$
y=
$$

\qquad
(iii) The mass M of the metre rule is provided for you on a card. Record this value.

$$
M=
$$

\qquad
(iv) Calculate the mass m_{1} of the piece of modelling clay using the equation

$$
m_{1}=\frac{M y}{x} .
$$

$$
m_{1}=
$$

\qquad
(b) Divide the modelling clay into two pieces, with one piece approximately twice the size of the other piece.
(i) Using the larger piece of modelling clay, of mass m_{2}, repeat the steps in (a).

$$
\begin{aligned}
& x= \\
& y= \\
& m_{2}=
\end{aligned}
$$

(ii) Using the smaller piece of modelling clay, of mass m_{3}, repeat the steps in (a).

$$
\begin{aligned}
& x= \\
& y= \\
& m_{3}=
\end{aligned}
$$

(iii) Calculate $m_{2}+m_{3}$.

$$
m_{2}+m_{3}=
$$

\qquad
(c) Assuming that the experiment has been carried out with care, suggest two reasons why $m_{2}+m_{3}$ may not be equal to m_{1}.

1. \qquad
\qquad
2. \qquad
\qquad
(d) Explain briefly how you ensured that the centre of the cube of modelling clay was at the 10.0 cm mark on the metre rule. You may draw a diagram.
\qquad
\qquad
\qquad

2 In this experiment, you will investigate temperature changes when hot and cold water are mixed.

You are provided with a supply of hot water and a supply of cold (room temperature) water.
(a) (i) Pour $100 \mathrm{~cm}^{3}$ of hot water into the beaker labelled A. Measure and record the temperature θ_{h} of the water in beaker \mathbf{A}.

$$
\theta_{\mathrm{h}}=
$$

\qquad
(ii) Measure and record the temperature θ_{c} of the cold water supplied.

$$
\theta_{\mathrm{c}}=
$$

\qquad
(b) (i) Add $10 \mathrm{~cm}^{3}$ of the cold water to the water in beaker \mathbf{A}. Briefly stir the water in beaker \mathbf{A}.
(ii) Measure and record in Table 2.1 the temperature θ_{m} of the water in beaker A. Also record the volume V of water added.
(iii) As soon as possible repeat step (b)(i) five times. Each time add $10 \mathrm{~cm}^{3}$ of cold water to the water already in beaker \mathbf{A} until a total of $60 \mathrm{~cm}^{3}$ has been added. Each time record in the table the temperature θ_{m} of the water in beaker \mathbf{A} and the total volume V of water added so far.

Table 2.1

$\mathrm{V} / \mathrm{cm}^{3}$	$\theta_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$

(c) Plot the graph of $\theta_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$ (y-axis) against V / cm^{3} (x-axis). Include on your graph the temperature θ_{h} at volume $V=0$, as recorded in (a)(i).

(d) If this experiment were to be repeated in order to check the results, it would be important to control the conditions. Suggest two such conditions that should be controlled.
1.
2.
(e) Suggest a practical precaution that will enable readings in this experiment to be taken as accurately as possible.
\qquad

3 In this experiment, you will investigate the potential difference across resistors in a circuit. Carry out the following instructions referring to Fig. 3.1. The circuit is set up for you.

Fig. 3.1
(a) (i) Switch on. Use the voltmeter to measure the potential difference V_{A} across resistor \mathbf{R}_{1}.

$$
V_{\mathrm{A}}=
$$

(ii) Measure the potential difference V_{B} across resistors $\mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{3}}$.

$$
V_{B}=
$$

(iii) Measure the potential difference V_{C} across the combination of the three resistors.

$$
V_{\mathrm{C}}=
$$

\qquad

Switch off.
(b) Theory suggests that $V_{\mathrm{C}}=V_{\mathrm{A}}+V_{\mathrm{B}}$.
(i) Calculate $V_{\mathrm{A}}+V_{\mathrm{B}}$.

$$
V_{\mathrm{A}}+V_{\mathrm{B}}=
$$

(ii) State whether your experimental results support the theory and justify your statement by reference to your results.
statement \qquad
justification \qquad
\qquad
\qquad
(c) (i) Switch on. Record the current I indicated on the ammeter.

$$
I=
$$

Switch off.
(ii) Calculate the resistance R of the combination of the three resistors using the equation $R=\frac{V_{\mathrm{C}}}{l}$.

$$
R=
$$

(d) On Fig. 3.1 draw in the voltmeter connected as required in (a)(iii) using the standard symbol for a voltmeter.

4 In this experiment, you will investigate the reflection of light by a plane mirror.
Carry out the following instructions referring to Fig. 4.1.

Fig. 4.1
(a) Draw a line 16 cm long near the top of the ray trace sheet. Label the line MR. Draw a normal to this line that passes through its centre. Label the point at which the normal crosses MR with the letter \mathbf{N}.
(b) Draw a line 16 cm long parallel to and 10 cm below the line MR. Label this line AB. Label the point at which the normal crosses this line with the letter \mathbf{L}.
(c) Place the mirror, with its reflecting face vertical, on the line MR. The mirror has a line drawn on it. One end of this line must be at point \mathbf{N}.
(d) Place a pin P_{1} on line $\mathbf{A B}$ at a point 3.0 cm to the left of the normal. Label this point \mathbf{C}.
(e) View the line on the mirror and the image of pin P_{1} from the direction indicated by the eye in Fig. 4.1. Place two pins P_{2} and P_{3} some distance apart so that the image of P_{1}, the line on the mirror, and pins P_{2} and P_{3}, all appear exactly one behind the other. Label the positions of P_{2} and P_{3}.
(f) Remove the pins and the mirror and draw in the line joining the positions of P_{2} and P_{3}. Continue the line until it meets the normal. Draw in the line joining point \mathbf{C} and point \mathbf{N}.
(g) Measure, and record in Table 4.1, the angle of incidence i between the normal and the line CN. Measure, and record in the table, the angle of reflection r between the normal and the line passing through P_{2} and P_{3}.
(h) Repeat the steps (d) - (g) using a position of $\mathrm{P}_{1} 5.0 \mathrm{~cm}$ from the normal.

Table 4.1

$i /{ }^{\circ}$	$r /{ }^{\circ}$

(i) In spite of carrying out this experiment with reasonable care, it is possible that the values of the angle of reflection r will not be exactly the same as the values obtained from theory. Suggest two possible causes of this inaccuracy.

1. \qquad
\qquad
2. \qquad
\qquad
Tie in your ray trace sheet between pages 10 and 11.
[Total: 10]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge

