

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICS

Paper 2 Core

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

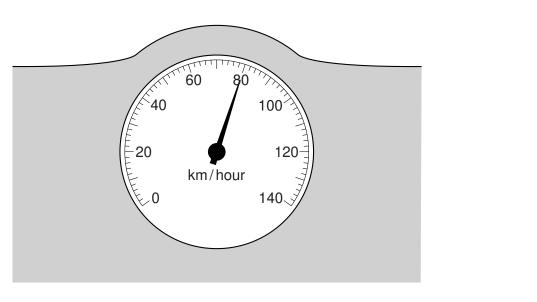
Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall = 10 m/s^2).

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
Total		


May/June 2012

1 hour 15 minutes

This document consists of **19** printed pages and **1** blank page.

1 A car is travelling along a level road at a steady speed. Fig. 1.1 shows the speedometer in the car. A speedometer registers how fast the car is going.

(a) How far, in km, does the car travel in $\frac{1}{2}$ hour at the speed shown in Fig. 1.1?

distance = km [3]

(b) (i) On the axes shown in Fig. 1.2, draw a line representing the motion of the car for the 1/2 hour mentioned in (a). Do not go beyond 1/2 hour. [3] Examiner's

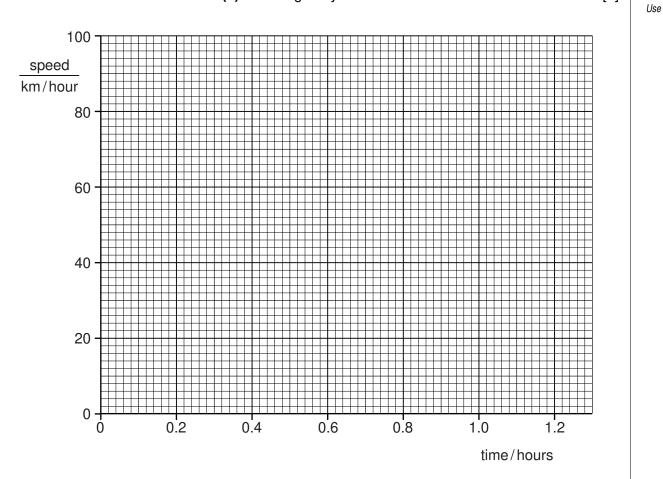
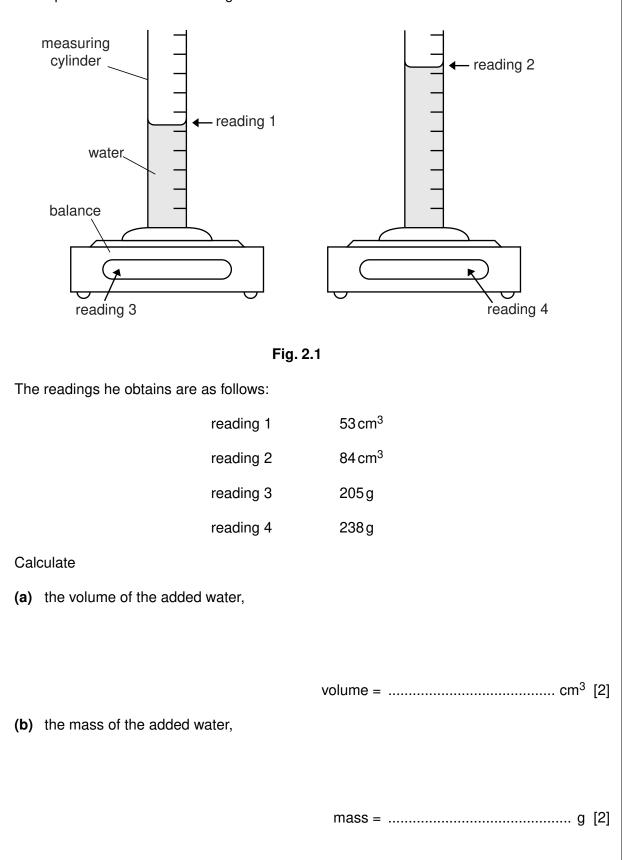


Fig. 1.2

(ii) At the end of the $\frac{1}{2}$ hour, the car reaches a region where the road begins to rise up into some mountains. The car climbs the mountains for a further $\frac{1}{2}$ hour.

During the climb, its speed steadily decreases to 30 km/hour. The driver then stops the car so that he can admire the view.

On Fig. 1.2, draw a line representing the climb and the stopping of the car. [4]


[Total: 10]

For

2 A student carries out an experiment to find the density of water, using a method that is slightly different from normal. In his method, he starts with a measuring cylinder containing some water, and then adds more water to that already in the measuring cylinder.

For Examiner's Use

His experiment is illustrated in Fig. 2.1.

 $(\ensuremath{\textbf{c}})$ the density of water, stating clearly the equation you are using.

For Examiner's Use

density = [4]

[Total: 8]

A train is passing through a station at constant speed, as shown in Fig. 3.1. The track is horizontal.

For Examiner's Use

 <u> </u>	 <u>`</u>

Fig. 3.1

The engine produces a forward thrust of 70000N. There is a 25000N force opposing the motion, due to friction in the wheels.

- (a) Mark these forces on Fig. 3.1, using an arrow labelled 70000N and an arrow labelled 25000N. [2]
- (b) The train is travelling at constant speed, so there must be another horizontal force acting on it.
 - (i) State the direction of this force.

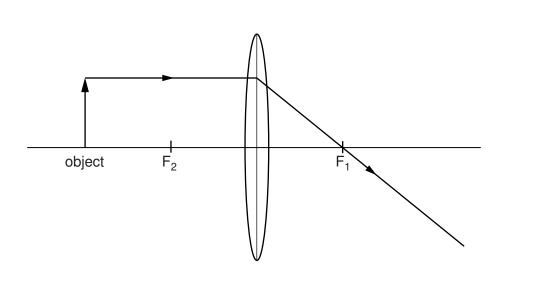
.....

(ii) Calculate the size of this force.

		size of force =N
	(iii)	Suggest what might be causing this force.
		[3]
(c)	Ond	ce the train has passed the station, the driver increases the engine's forward thrust.
	All	other forces stay the same.
	(i)	What happens to the train?
	(ii)	Why does this happen?
		[2]
		[Total: 7]

4	(a)	Exp	lain, in terms of molecules, how a gas causes a pressure on the walls of its container.	For Examiner's
				Use
	(h)	 Con		
	(b)	COII		
		(i)	At constant temperature, the pressure of a gas increases as its volume	
		(ii)	At constant volume, the pressure of a gas increases as its temperature	

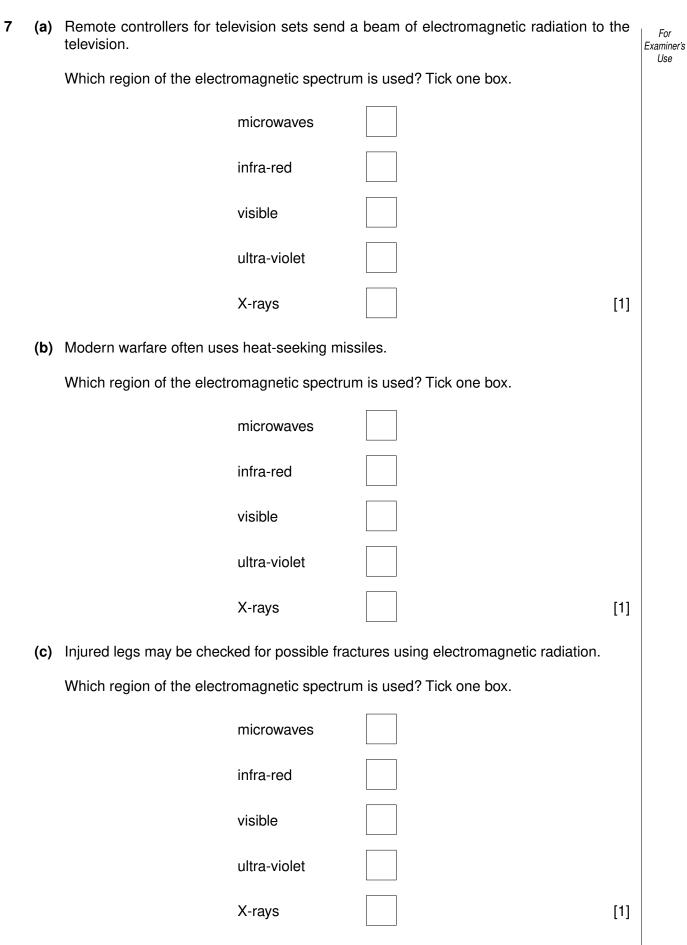
[Total: 6]


(a) The principle of conservation of energy states that energy can neither be created nor 5 For destroyed. Examiner's Use What, then, does happen to the energy supplied to a device such as a motor or a television? (b) The television in Fig. 5.1 is switched on to watch a programme. During this time, 720kJ of electrical energy is supplied. electrical energy input = 720 kJ light energy output = 4 kJsound energy output = 20 kJ Fig. 5.1 From the information on Fig. 5.1, find the total energy provided for the viewer to see (i) and hear the television during this programme. energy = kJ [1] (ii) Suggest what happens to the rest of the energy supplied.[2]

6 The ray diagram in Fig. 6.1 shows one ray from the top of an object placed to the left of a converging lens.

[1]

[3]



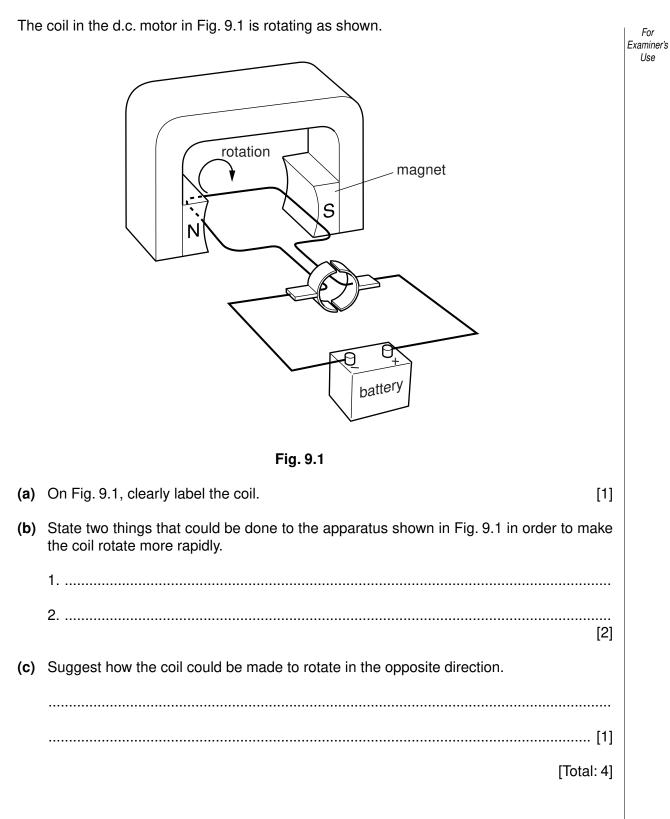
- (a) On Fig. 6.1, use your ruler to draw another ray from the top of the object until it crosses the ray printed on the diagram. [2]
- (b) On Fig. 6.1, draw the image of the object.
- (c) Which of the following descriptions fit the image formed by the lens? Tick **3** boxes.

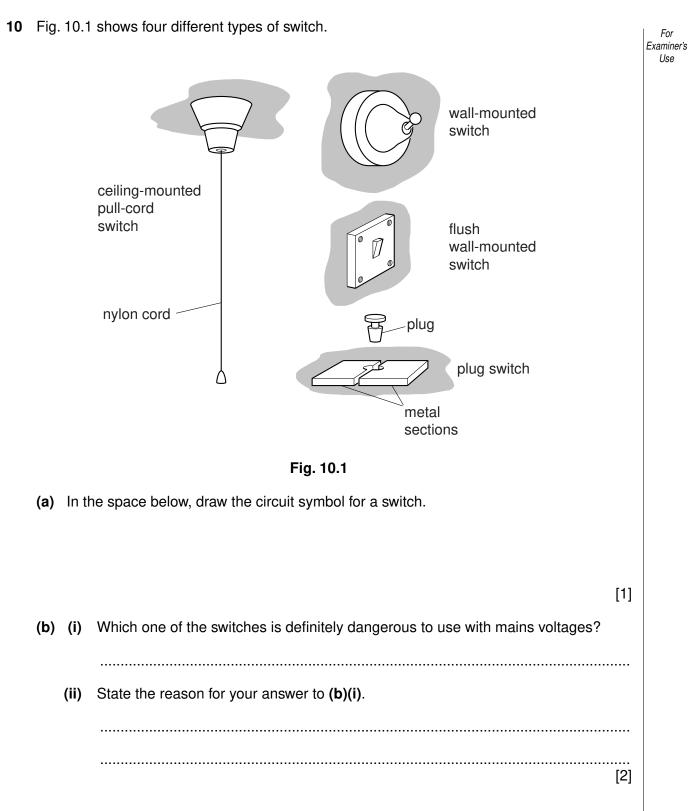
much larger than the object	
much smaller than the object	
same size as the object	
upright	
inverted	
real	

0625/21/M/J/12

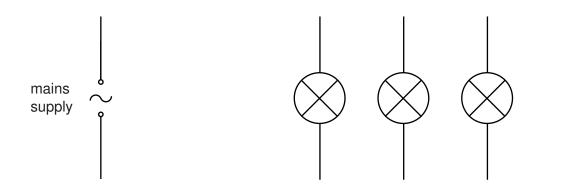
(d)	The object is moved to a position further from the lens.	For
	What differences are seen in the image, compared with the previous image?	Examiners Use
	[2]	
	[Total: 8]	

(d) Mobile phones communicate using electromagnetic radiation.


Which region of the electromagnetic spectrum is used? Tick one box.


microwaves		
infra-red		
visible		
ultra-violet		
X-rays	[1]	

[Total: 4]


For Examiner's Use

8	(a)	Cor	nplete the following sentences.	For
		(i)	An electric current exists in a wire when are made to flow in the wire. [1]	Examiner's Use
		(ii)	The current in a wire may be measured using an instrument called	
			[1]	
		(iii)	The potential difference across a wire may be measured by connecting	
			across the wire. [1]	
	(b)	A le	ength of resistance wire is connected in a simple series circuit.	
		The	e current in it is 0.8 A. The potential difference across it is 9.6 V.	
		Cal	culate the resistance of the wire.	
			resistance =[4]	
	(c)	The	e resistance wire in (b) is replaced by a greater length of wire from the same reel.	
		With	hout further calculation, state the effect this has on	
		(i)	the resistance in the circuit,	
		(ii)	the current in the new wire when there is a potential difference of 9.6V across it, as before.	
			[2]	
			[Total: 9]	
				1

- (c) A laundry, where clothes are washed, is likely to have lots of steam and condensation.
 - (i) Which switch is the most suitable for turning the lights on or off from within the laundry?
 - (ii) State the reason for your answer to (c)(i).
- (d) The laundry is lit by three mains-voltage lamps. Fig. 10.2 shows the mains supply and the three lamps.

Complete Fig. 10.2 by adding the switch and the wiring that will allow all three lamps to light at full brightness when the switch is on. [2]

[Total: 8]

For Examiner's Use 11 Fig. 11.1 shows an electron beam about to enter, at point A, the electric field between two For charged metal plates. Examiner's Use В electron beam A + T С Fig. 11.1 (a) On Fig. 11.1, carefully draw the path of the electron beam between A and the line BC. [3] (b) The voltage across the plates is reversed. State what difference this makes to the path of the electron beam. [Total: 4]

substance		symbol	type of radiation emitted	half-life	
barium-139		¹³⁹ 56Ba	beta (β)	85 minutes	
silver-110		¹¹⁰ ₄₇ Ag	beta (β)	24 seconds	
techr	netium-99m	⁹⁹ 43 ⁷ с	gamma (γ)	6.0 hours	
tho	rium-232	²³² Th	alpha (α)	1.4 × 10 ¹⁰ years	
(a)	 (a) Which of these substances has the greatest number of particles in the nucleus of its atoms? 				
(b)	Which of thes atom?	e substances has th	e least number of electrons in th	ne orbits of a neutral	
				[1]	
(c) Which of these substances are emitting particles?					
	[2]				
(d)	(d) Samples of each of these substances are decaying. Each sample starts with the same number of atoms.				
	Which sample decays the most in one hour?				
	[1]				
(e)	(e) In the investigation of a blood circulation problem, a patient is given an injection containing one of these substances. The radiation needs to be detectable from outside the body.				
Which of the		substances might be	suitable for this use?		
[[1]	

12 The table below gives details about some radioactive substances.

For Examiner's Use

[Total: 6]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.