MARK SCHEME for the October/November 2012 series

0625 PHYSICS

0625/53
Paper 5 (Practical), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0625	53

1 (a) (i) and (ii) l_{0} and l_{1} clearly in $\mathrm{cm} / \mathrm{mm}$ and $l_{1}>l_{0}$
(iii) Correct value for e_{1} from 1 (a)(i) \& 1(a)(ii)
(iv) Correct calculation for k (allow ecf)

Unit g / cm or g / mm consistent with e_{1}
(b) (i) Appropriate method (can be written and/or in diagram)
e.g. measure half width of mass either side of $40 \mathrm{~cm} /$ mark centre of mass
(ii), (iii) and (iv) $l_{2}>l_{3}$ and e_{2} calculated
(v) M within range ($180-220 \mathrm{~g}$) (no ecf)

2 or 3 significant figures
(c) Any two from:
rule bends
mass not exactly at 40 cm
mass may slip
end of rule may slip
hook not directly above 0 cm
spring extension not uniform/owtte
proportional limit exceeded
mass irregular/C of G not at centre/owtte
any other valid cause of inaccuracy

2 (a) Units all correct (symbols or words)
t values inserted ($0,60,120,180,240$)
θ for white card increasing
θ for black card increasing at greater rate than θ for white card
(b) (i) Both temperature changes correct
(ii) Statement matching temperature changes (expect 'black') with supporting comparative comment
(iii) Statement matching results (expect 'Yes' but allow ecf)

Figures from table supporting correct statement and time interval mentioned

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0625	53

(c) Any one from:
same (type of) lamp/same brightness
same distance/same height
same (type of) thermometer
same area of card
same thickness of card
good contact between card and thermometer (owtte)
same start temperature/allow thermometer to cool
allow lamp to cool
Appropriate matching explanation:
power output may not be the same (owtte)
different intensity of radiation (owtte)
respond differently/different heat capacity
different surface area to absorb radiant heat (owtte)
different rate of conduction (owtte)
rate of rise different at different temperatures
heating starts at different times
[Total: 10]

3 (a) Correct symbol for voltmeter
Connected in parallel with lamp
$\begin{array}{ll}\text { (b) and (c) Units all correct (symbols or words) } \\ \text { All p.d.s }<7.0 \mathrm{~V} \text { and to at least } 1 \mathrm{~d} . \mathrm{p} . & {[1]} \\ & {[1]}\end{array}$
currents all $<1.00 \mathrm{~A}$ and to at least 2 d.p.
R calculations correct
Consistent 2 or 3 significant figures in R column
(d) Statement matches results (expect 'No')

R figures quoted appropriately and matching statement
Mention of brightness related to temperature

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0625	53

4 (a) and (b) Values of v in metres [1]
To 3 significant figures
Correct values for 1 (consistent with v values in table)
(c) Axes labelled (including units) and appropriate scales

Plots correct
Well judged straight line
Thin line and fine plots
(d) (i) and (ii) p and q values recorded and matching graph
(e) (i) and (ii) f within range 13.0 to 17.0 (or equivalent m / mm)

