

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

PHYSICS 0625/21

Paper 2 Core October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall = $10 \,\text{m/s}^2$).

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
Total		

This document consists of 16 printed pages.

1	(a)	State the name that is given to the turning effect of a force.
		[1

(b) A gate has rusty hinges that are very stiff. A man opens the gate by pulling on it, as shown in Fig. 1.1.

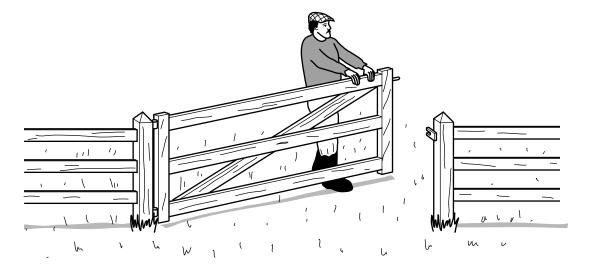


Fig. 1.1

After he has passed through the opening, he closes the gate behind him.

When closing the gate, the man pulls it at a point halfway along its length.

State two differences between his force when closing the gate and his force when he opened the gate.

1	
2	
	[2]

(c) Suggest one way of reducing the force needed to open the gate.

.....[1]

[Total: 4]

2

(a)	Stat	te the equation linking the density of a substance with its mass and volume.	For Examiner's
			Use
		[1]	
(b)		en oil leaks out of a damaged oil-tanker, it forms a very thin layer of oil, known as an slick, on the water.	
		e such oil slick covers an approximately rectangular area measuring $2.5\times10^4\text{m}$ by $\times10^3\text{m}$.	
	The	oil slick is 3.0×10^{-6} m (0.0000030 m) thick.	
	(i)	Calculate the volume of the oil slick.	
		volume = m ³ [3]	
	(ii)	The density of the oil is 900kg/m^3 .	
		Calculate the mass of oil in the slick.	
		mass = kg [2]	
		[Total: 6]	

3 Fig. 3.1 shows four runners at the start of an 80 m race on a school sports day.

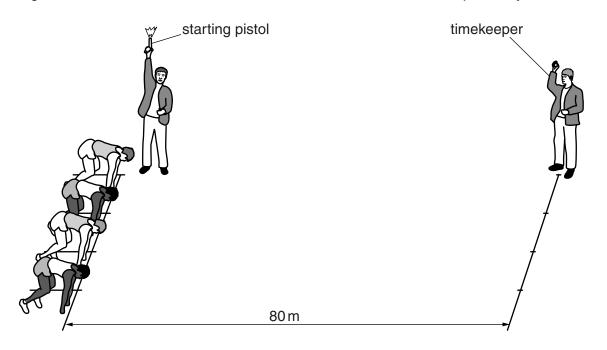


Fig. 3.1 (not to scale)

(a) Sound travels at 320 m/s.

Calculate the time taken for the sound from the starting pistol to reach the timekeeper.

			_
time =	_	כו	ı
ਦ =			п

(b) The timekeeper takes 0.20s to react after hearing the sound and then starts the stopwatch.

He makes no other experimental inaccuracies.

(i) By how much will his time for the race be in error?

ime error =	 s	[2]	l

(ii) Suggest how he can reduce this error, whilst still using the same stopwatch.

.....[1]

(c) When he stops the stopwatch as the winner crosses the finishing line, the appearance of the stopwatch is as shown in Fig. 3.2.

For Examiner's Use

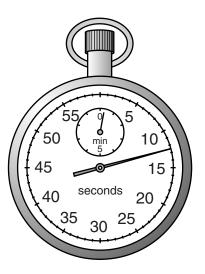


Fig. 3.2

How long did the winner actually take to run the race?

time = s [2]

[Total: 8]

4 An archer pulls the string of his bow, and moves the arrow to the position shown in Fig. 4.1. He then releases the string so that the arrow is fired towards a target.

For Examiner's Use

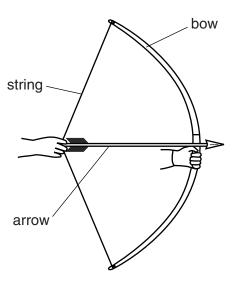


Fig. 4.1

(a) The archer does work on the bow.

When is this work done? Tick one box.

as the string is pulled back to the position shown in Fig. 4.1

whilst holding the string in the position shown in Fig. 4.1

after releasing the string to fire the arrow

[1]

(b) What type of energy is stored in the bow because it is bent?

_____[1]

(c) What type of energy does the arrow have because it is moving?

.....[1]

(d) On another occasion, the archer fires the arrow so that it rises up to a maximum height before falling back down to the ground.

Use words from the following list to complete the sentences below.

_

5	(a)		netal ruler with a rectangular cross-section is heated in an oven.	For Examiner's Use
		(i)	State two things that happen to the atoms of the metal. 1	036
			2	
		(ii)	State what happens to	
			1. the length of the ruler,	
			2. the width of the ruler,	
			3. the thickness of the ruler	
	(b)	The	e nut in Fig. 5.1 has become jammed on the bolt, so that it will not rotate.	
			very hot flame	
			Fig. 5.1	
		Ехр	plain why heating the nut with a very hot flame is likely to free the jammed nut.	
			[2]	
			[Total: 6]	

6 (a) In Fig. 6.1, a ray of red light is shown passing through a triangular glass prism and on to another prism that is identical but upside down.

For Examiner's Use

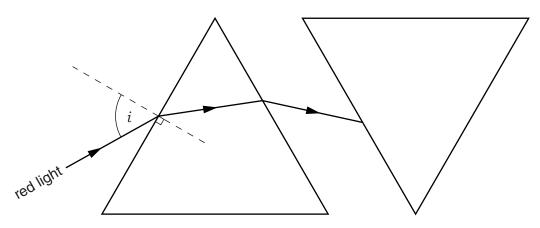


Fig. 6.1

- (i) The angle of incidence of the red light at the first surface is shown on Fig. 6.1 as i.On Fig. 6.1, use the letter r to mark clearly the angle of refraction at the first surface.[1]
- (ii) On Fig. 6.1, complete the path of the ray through the right-hand prism and out into the air again. Label the emergent ray "line R". [3]
- (iii) The beam of red light is moved so that it shines into the right-hand prism along line R.

Using the letter P, mark clearly the point where this ray will emerge from the left-hand prism. [1]

(b) On another occasion, a beam containing a mixture of red and blue light is shone into a prism, as shown in Fig. 6.2.

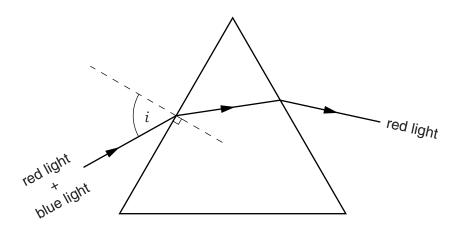


Fig. 6.2

(i) On Fig. 6.2, draw the path of the blue light through the prism and out into the air again. [3]

(ii)	Refraction is occurring at the firs	t surface.	I	For .
	Which of the following is also occ	curring? Tick one box.		Examiner's Use
	diffraction			
	dispersion			
	focusing			
	total internal reflection		[1]	
			[Total: 9]	

7 Fig. 7.1 shows a compass needle that has come to rest in the Earth's magnetic field.

For Examiner's Use

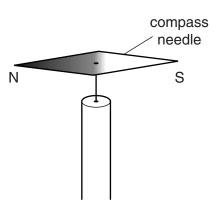


Fig. 7.1

- (a) On Fig. 7.1, draw an arrow pointing towards the north pole of the Earth. [1]
- **(b)** The S pole of a bar magnet is brought towards the S pole of the compass needle, as shown in Fig. 7.2.

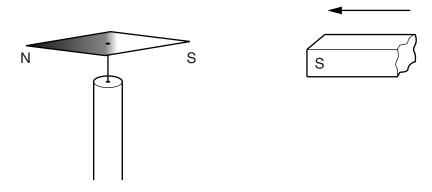


Fig. 7.2

Describe what is seen happening to the compass needle as this is done.		
[2]		

(c) The magnet in (b) is removed and a horizontal wire is positioned above the compass needle, as shown in Fig. 7.3.

For Examiner's Use

wire

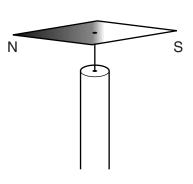


Fig. 7.3

hen there is a current in the wire, the compass needle rotates through a small angle.
ggest why this rotation occurs.
[2]
[Total: 5

8 Fig. 8.1 shows a cell.

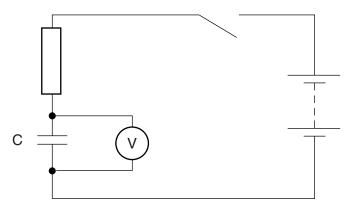
For Examiner's Use

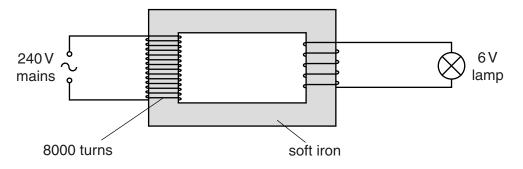
		Fig. 8.1
(a)	Wha	at does the 1.5V indicate about the cell?
		[2]
(b)		ee cells identical to the cell in Fig. 8.1 make up a 4.5V battery. The battery is nected in series with a 180Ω resistor.
	Cal	culate the current in the circuit.
		current =[4]
(c)	A s	econd 180 Ω resistor is connected in parallel with the 180 Ω resistor from (b) .
	(i)	In the space below, draw the circuit diagram of the two resistors in parallel, connected to the battery. Use standard symbols.
		[3]
	(ii)	State the value of
		1. the potential difference across the second 180 Ω resistor,
		2. the current in the second 180 Ω resistor.
		[2]

[Total: 11]

9 Fig. 9.1 shows a time-delay circuit that includes a capacitor C and a resistor of very high resistance.

For Examiner's Use




Fig. 9.1

		-			
(a)	On Fig. 9.1, use the letter S to label the switch. [1]				
(b)	When the switch is open, the voltmeter in the circuit registers zero.				
	After the switch has been closed, what happens, if anything, to				
	(i) the charge in the circuit,				
		[1]		
	(ii)	the reading on the voltmeter?			
		[2]		
(c)	The	switch is now opened again.			
	State what happens, if anything, to the reading on the voltmeter.				
		[1]		
		[Total:	5]		

10 A 240V a.c. mains supply is connected to the primary coil of the transformer shown in Fig. 10.1. A lamp that gives full brightness with a 6V supply is connected to the secondary coil.

For Examiner's Use

[Total: 7]

Fig. 10.1				
(a)	Nar	ne a suitable material from which the coils may be made.		
		[1]		
(b)		te the name given to the part of the transformer that is made of soft iron (see 10.1).		
		[1]		
(c)		culate the number of turns of wire in the secondary coil that will enable the lamp to t at full brightness.		
		number of turns =[3]		
(d)	Sta	te what would happen to the lamp if the number of turns in the secondary coil was		
	(i)	much less than that calculated in (c) ,		
		[1]		
	(ii)	much more than that calculated in (c).		
		[1]		

11 The apparatus for investigating the absorption of the emissions from a radioactive source is shown in Fig. 11.1.

For Examiner's Use

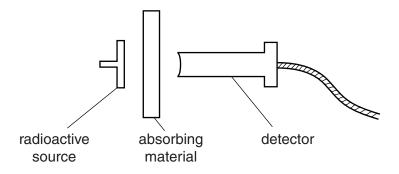


Fig. 11.1

The source and detector are about 2cm apart. The detector is connected to a scaler, which measures the count rate.

Different absorbing materials are placed between the source and the detector.

The table below shows the count rate obtained with each of five absorbers.

absorbing material	count rate counts/s		
air sheet of paper 0.5 mm of aluminium 10 mm of aluminium 10 mm of lead	523 523 391 214		

(a)	
	[2]
(b)	What is the evidence that β -particles are being emitted?
	[2]
(c)	What is the evidence that γ -rays are being emitted?
	[2]

[Total: 6]

For Examiner's Use

12	(a)) The symbol for an α -particle is either ${}^4_2\alpha$ or 4_2 He.					
		(i)	What does	the 4 indicate abou	t an α -particle?		
							[1]
		(ii)	What does	the 2 indicate abou	t an α -particle?		
							[1]
	(b)	The	symbol for	a β-particle is either	$^{0}_{-1}\beta$ or $^{0}_{-1}e$.		
		(i)	What does	the 0 indicate abou	t a β-particle?		
							[1]
		(ii)	What does	the -1 indicate abo	ut a β-particle?		
							[1]
	(c)	The	e list below g	ives, in nuclide nota	tion, the symbols	of five radioactive ı	nuclides.
			²⁴⁰ Pu	²⁴⁴ Cm	²⁴⁸ ₉₈ Cf	²⁵⁰ ₉₇ Bk	²⁵⁰ ₉₈ Cf
		(i)	²⁴⁴ Cm dec	ays by emitting an c	x-particle.		
			Into which of the other nuclides in the list does it decay?[1]				
		(ii)	²⁵⁰ Bk deca	ys by emitting a β-p	article.		
			Into which	of the other nuclides	s in the list does it	decay?	[1]
							[Total: 6]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.