

			S S S S S S S S S S S S S S S S S S S
	UNIVERSITY OF CAMBRIDGE INTE International General Certificate of Se		S ets.com
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICS			0625/51
Paper 5 Praction	cal Test	Octo	ber/November 2013 1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions.

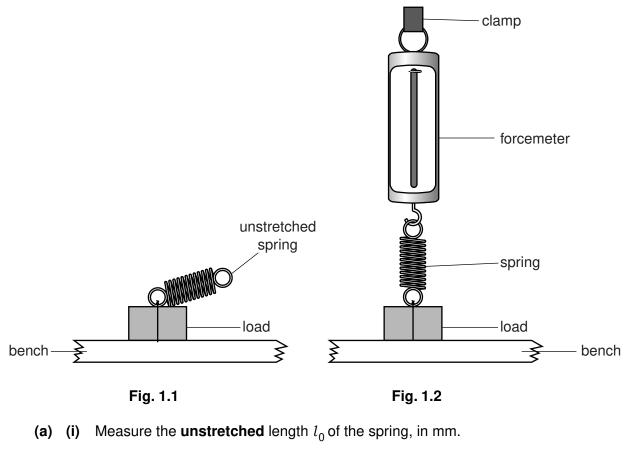
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of the page. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


For Exam	iner's Use
1	
2	
3	
4	
Total	

This document consists of 9 printed pages and 3 blank pages.

1 In this experiment, you will investigate the stretching of a spring.

Examiner's Carry out the following instructions, referring to Fig. 1.1 and Fig. 1.2. Do not move the large load that is on the bench. At the start of the experiment, the spring should not be attached to the forcemeter.

For

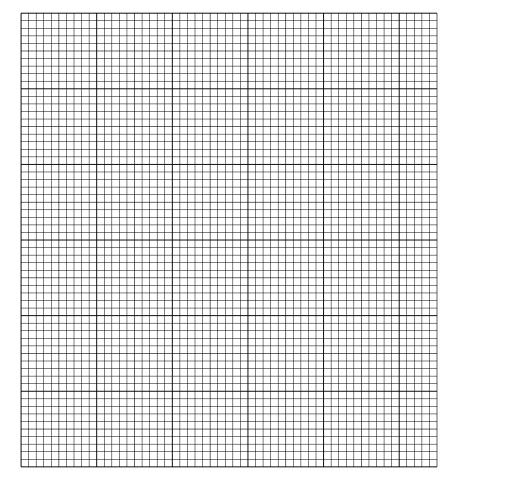
Use

- (ii) On Fig. 1.1, mark clearly the distance you have measured.
- Attach the spring to the forcemeter, as shown in Fig. 1.2. The load must remain on (iii) the bench.
- Gently raise the forcemeter until it reads 1.0 N. Clamp the forcemeter in this position. (iv)

Record the forcemeter reading F in Table 1.1. Measure, and record in the table, the new length *l* of the spring.

(v) Calculate the extension e of the spring using the equation $e = (l - l_0)$. Record the value of *e* in the table.

Repeat steps (iv) and (v) using forcemeter readings of 2.0 N, 3.0 N, 4.0 N and 5.0 N. (vi) Record all the readings and results in the table. Examiner's


<i>F</i> /N	<i>l/</i> mm	<i>e</i> /mm

[4]

For

Use

(b) Plot a graph of e/mm (y-axis) against F/N (x-axis).

[4]

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

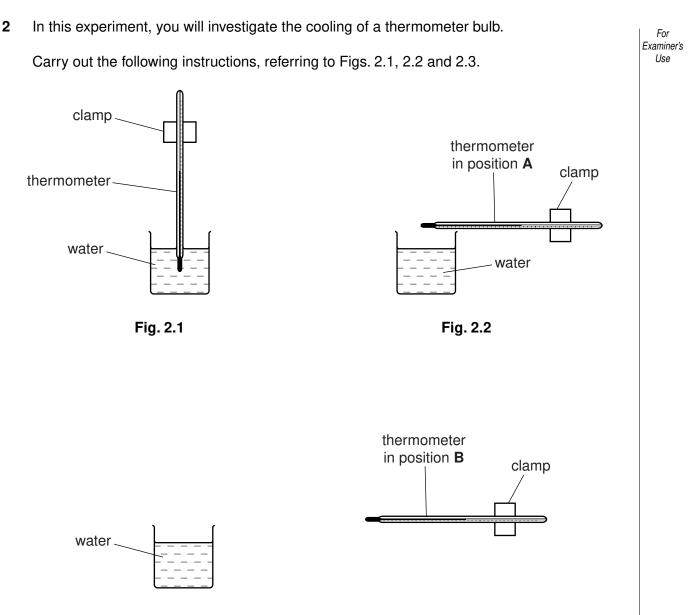


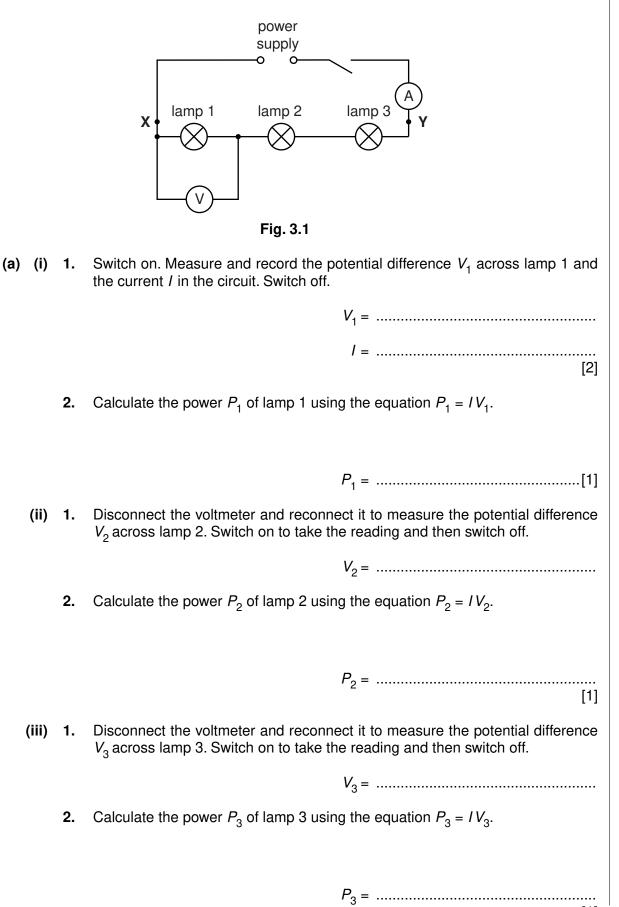
Fig. 2.3

Place the thermometer in the beaker of hot water, as shown in Fig. 2.1.

(a) (i) When the thermometer reading stops rising, record the temperature $\theta_{\rm H}$ of the hot water.

 $\theta_{\mathsf{H}} = \dots [1]$

- (ii) Quickly move the thermometer until the thermometer bulb is in position **A**, just above the beaker, as shown in Fig. 2.2. Immediately start the stopclock.
- (iii) After 30 s, measure the temperature θ shown on the thermometer. Record the time t = 30 s and the temperature reading in Table 2.1.
- (iv) Continue recording the time and temperature readings every 30s until you have six sets of readings.


Table 2.1

		Position A	Position B	
	t/	θ/	θ /	
				_
				_
				_
				[5]
) Cor	nplete the column he	adings in the table.		
	place the thermomet os rising, record the t	er in the beaker of hot wave emperature $ heta_{H}$.	ater. When the thermo	ometer reading
		$ heta_{H}$	=	[1]
) (i)		nermometer at least 10 cm 8. Immediately start the sto		r to position B ,
(ii)	After 30s, measure temperature reading	e the temperature θ show g in Table 2.1.	n on the thermomet	er. Record the
(iii)	Continue recording	the temperature every 30s	s until you have six rea	idings.
-	cribe briefly a preca able.	ution that you took in orde	er to make the temper	ature readings
				[1]
	cientist is using this ve hot water.	experiment as part of res	earch into convection	currents of air
Sug	gest two conditions	hat should be kept consta	nt when this experime	nt is repeated.
1				
2				
				[2]
				[Total: 10]

| For

3 In this experiment, you will investigate the power of lamps in a circuit.

Carry out the following instructions, referring to Fig. 3.1.

0625/51/O/N/13


[1]

For Examiner's Use

(iv) 1. Disconnect the voltmeter. Reconnect the voltmeter to measure the potential For difference V across all three lamps. Switch on to take the reading and then Examiner's Use switch off. *V* = 2. Calculate the total power P_{T} of the three lamps using the equation $P_{T} = IV$. $P_{\mathsf{T}} = \dots$ [1] (b) A student suggests that P_{T} should be equal to $P_{1} + P_{2} + P_{3}$. State whether your results support this suggestion and justify your answer by reference to the results. statement justification [1] (c) (i) Draw a circuit diagram, similar to that in Fig. 3.1, to show a variable resistor in series with the power supply, the three lamps in parallel with each other between X and Y, the voltmeter connected to measure the potential difference across the lamps. Use standard symbols. You are not asked to set up this circuit. [2] (ii) State the purpose of the variable resistor in this circuit.[1] [Total: 10]

0625/51/O/N/13

[Turn over

8

(b)	Rep	beat the steps in (a) using $u = 40.0 \text{ cm}$.	For Examiner's
		V =	Use
		UV =	
		<i>U</i> + <i>V</i> =	
		f =[2]	
(c)	(i)	Check that $u = 40.0$ cm. Carefully move the screen backwards and forwards to obtain the range of <i>v</i> values for which the image is well focused.	
		range of <i>v</i> values =	
	(ii)	From your results in parts (a) and (b), calculate an average value f_{AV} for the focal length of the lens, giving your answer to a suitable number of significant figures for this experiment.	
	(ii)	From your results in parts (a) and (b), calculate an average value f_{AV} for the focal length of the lens, giving your answer to a suitable number of significant figures for	
	(iii)	From your results in parts (a) and (b), calculate an average value f_{AV} for the focal length of the lens, giving your answer to a suitable number of significant figures for this experiment.	
		From your results in parts (a) and (b), calculate an average value f_{AV} for the focal length of the lens, giving your answer to a suitable number of significant figures for this experiment. $f_{AV} = \dots $	
		From your results in parts (a) and (b), calculate an average value f_{AV} for the focal length of the lens, giving your answer to a suitable number of significant figures for this experiment. $f_{AV} = \dots $	
		From your results in parts (a) and (b), calculate an average value f_{AV} for the focal length of the lens, giving your answer to a suitable number of significant figures for this experiment. $f_{AV} = \dots $	

BLANK PAGE

10

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.