CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0625 PHYSICS

0625/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0625	32

NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

B marks are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks

are compensatory marks which can be scored even if the points to which they refer are
not written down by the candidate, provided subsequent working gives evidence that
they must have known it. For example, if an equation carries a C mark and the candidate
does not write down the actual equation but does correct working which shows he knew
the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.

Brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

c.a.o. means "correct answer only".

e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated "e.c.f."

e.e.o.o. means "each error or omission".

owtte means "or words to that effect".

<u>Underlining</u> indicates that this <u>must</u> be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the mark.

AND indicates that both answers are required to score the mark.

Spelling Be generous with spelling and use of English. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection/refraction/diffraction or thermistor/transistor/transformer.

Sig. figs. On this paper, answers are generally acceptable to any number of significant figures ≥ 2, except where the mark scheme specifies otherwise or gives an answer to only 1 significant figure.

Units Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: **maximum 1 per question**.

Fractions Fractions are only acceptable where specified.

Page 3	Mark Scheme		Paper	
	Cambridge IGCSE – May/June 2015	0625	32	
Extras	If a candidate gives more answers than required, irrelevant extras are ignored; for extra which contradict an otherwise correct response, or are forbidden by the mark scheme, use right plus wrong = 0.			
Ignore	indicates that something which is not correct is disregarded and does not cause a right plus wrong penalty.			
NOT	indicates that an incorrect answer is not to be disregarded, but can otherwise correct alternative offered by the candidate, i.e. right plus applies.			

P	Page 4		wark Scheme	Syllabus	Paper		
			Cambridge IGCSE – May/June 2015	0625	32		
1	(a)	dot	lots farther apart (in 2nd time interval) owtte				
	(b)	(i)	(average speed =) $d \div t$, in any form, e.g. words, symbols, numbers	3	C1		
			$0.095\mathrm{m/s}$		A1		
		(ii)	(average speed =) 0.29 m/s		B1		
	(c)	(a :	$=) (v-u) \div t$		C1		
		= (= (candidate's (b)(ii) - candidate's (b)(i)) ÷ 0.02				
		cor	rect value calculated from candidate's values in (b)(i)(ii) , expect 9.5	m/s²	A1		
2	(a)	<i>p</i> ₁\	$V_1 = p_2 V_2$ in any form OR $(p_1 =) p_2 V_2 \div V_1$		C1		
		p ₁ :	\times 470 = 800 \times 60 OR (p_1 =) 800 \times 60 ÷ 470		C1		
		102	2 OR 100 kPa		A1		
	(b)	mo	lecules would move faster/have more KE		B1		
		mo	re (frequent)/harder collisions with walls/cylinder/piston		B1		
		pre	essure increases		B1		
	(c)	use	$e ext{ of } p = F \div A ext{ in any form OR } (F =) pA$		C1		
		(F	=) 4400 N		A1		
3	(a)	stra	ain / elastic (potential) (energy)		B1		
	(b)	(i)	(KE =) $\frac{1}{2}$ m v ² in any form		C1		
			1200 J		A1		
		(ii)	(G)PE (gained) = KE (lost) in any form		C1		
			(G)PE = mgh OR h = PE \div mg in any form		C1		

Syllabus

Α1

B1

(iii) friction with air OR air resistance OR thermal energy / heat produced/lost

1.8 m e.c.f. from **(b)(i)**

	ugo ·		Cambridge IGCSE – May/June 2015	0625	32
	(c)	(i)	limit of proportionality		B1
		(ii)	Hooke's law		B1
4	(a)	box	2: Z measures p. d.		B1
		box	4: X and Y are different materials.		B1
		box	6: X and Y are electrical conductors.		B1
	(b)	mo	re sensitive OR thread moves more		M1
		mo	re (greater volume of) expansion		A1
	(c)	not	linear OR linearity worse/less		B1
		cor	rectly relates movement of thread to diameter of capillary		B1
5	(a)	(i)	(number of complete) vibrations (of the strip) per second/unit time		B1
		(ii)	maximum displacement of end of strip from mid-position OR XY OR ZY OR XZ ÷ 2		B1
	(b)	(i)	$(t =) d \div v OR 2d \div v$		C1
			0.20 s OR 0.2 s		A1
		(ii)	0.60 s OR 0.6 s c.a.o.		B1
	(c)	(i)	accept any value between 1.0 and $9.9 \times 10^3 \text{m/s}$		B1
		(ii)	accept any value between 1.0 and $9.9\times10^3\text{m/s}$		B1
	(d)	v =	$f\lambda$ in any form OR $v \div f$		C1
		cor	rect evaluation from candidate's (c)(i) with unit, expect 0.016 m		B1
6	(a)	(i)	$n = v_a \div v_g$ in any form		B1
		(ii)	$2.0 \times 10^{8} \text{ OR } 2 \times 10^{8} \text{ m/s}$		B1
	(b)	(i)	$n = \sin(i) \div \sin(r) \text{ OR } \sin(r) = 1.5 \times \sin 41^{\circ}$ OR $\sin^{-1}(r) = 0.98$		C1
			$(r =) 80^{\circ}$		A1
			(<i>i = j</i> 55		Λ1

Page 5

Syllabus

Paper

-	ugo .		Cambridge IGCSE – May/June 2015	0625	32		
		(ii)	total (internal) reflection OR no refraction OR all light reflected	,	B1		
	(c)	sor	come indication of multiple reflections in optical fibre, accept from diagram				
			ppropriate further information, .g. endoscope OR looking/illuminating inside body				
7	(a)	bra	ss: needle horizontal		B1		
		ma	gnet: needle vertical, N pole up		B1		
	(b)	(i)	no forces/effect on needle		B1		
		(ii)	needle aligns with field OR N or S pole attracted along field line or	to			
			(magnetic) S or N NOT points to N of Earth		B1		
	(c)		el, accept cobalt, nickel, ferrite, Magnadur, Alnico T iron		B1		
8	(a)		ergy transferred per coulomb/ <u>unit</u> charge energy supplied in driving coulomb/ <u>unit</u> charge around a circuit				
			CEPT p.d./voltage across battery/power supply		B1		
	(b)	(i)	$V = IR$ in any form OR $(I =) V \div R$		C1		
			2.0 A OR 2 A		A1		
		(ii)	electrons		B1		
		(iii)	arrow right to left by heater OR indication of clockwise		B1		
	(c)	(E :	=) VIt OR V^2t/R OR I^2Rt in any form		C1		
		14	000 J		A1		
9	(a)	(i)	electromagnetic induction OR mutual induction		B1		
		(ii)	copper		B1		
			good conductivity OR good conductor		B1		
	(b)	(i)	$N_P \div N_s = V_P \div V_s$ in any form OR $N_P V_s \div V_P$		04		
			accept in ratio format		C1		
			400		A1		

Syllabus

Paper

Page 6

Page 7		7	Mark Scheme Syllabus			Paper	
				Cambridge IGCSE – May/June 2015	0625	32	
		(ii)	(current in se	econdary =) 4 × 1.5 OR 6.0 (A)		C1	
			$I_{P}V_{P} = I_{S}V_{S}$ i	n any form OR $I_{\rm S}V_{\rm S} \div V_{\rm P}$		C1	
			0.30 OR 0.3	A		A1	
10	(a)	2 p	rotons and 2	neutrons OR helium <u>nucleus</u>		B1	
	(b) α in direction of field OR α towards negative (plate) OR β in opposite direction to field OR β towards positive (plate) OR α and β deflected in opposite directions					C1	
				field OR $lpha$ towards negative (plate)			
		AN β ir		ection to field OR β towards positive (plate)		A1	
	(c)	not	deflected			B1	
	(d)	ver	versions owtte of same element owtte				
		(isotopes of same element have) same proton number/number of protons/atomic number/Z					
			(isotopes of same element have) different nucleon numbers/ number of neutrons/mass number/A				
11	(a)	(i)	(function of	cathode is) to emit/produce electrons		B1	
		(ii)	4th box: va	acuum		B1	
	(b)	(i)	B: box 3	no voltage between X-plates		B1	
			B: box 4	voltage plate Y ₁ > voltage plate Y ₂		B1	
			C: box 2 AND box 4	voltage plate X_1 < voltage plate X_2 voltage plate Y_1 > than voltage plate Y_2		B1	
		(ii) no voltage between X plates so no horizontal deflection AND beam attracted upwards to higher V / Y ₁ OR other correct argument					