Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

PHYSICS

Paper 4 Theory (Extended)
For Examination from 2016
SPECIMEN MARK SCHEME
1 hour 15 minutes

MAXIMUM MARK: 80

mark scheme abbreviations
() the word, phrase or unit in brackets is not required but is in the mark scheme for clarification
accept accept the response
AND both responses are necessary for the mark to be allowed
c.a.o. correct answer only
e.c.f. error carried forward; marks are awarded if a candidate has carried an incorrect value forward from earlier working, provided the subsequent working is correct
ignore this response is to be disregarded and does not negate an otherwise correct response

NOT do not allow
note: additional marking guidance
/ OR alternative responses for the same marking point
owtte or words to that effect
underline mark is not allowed unless the underlined word or idea is used by candidate
units there is a maximum of one unit penalty per question unless otherwise indicated any [number] from: accept the [number] of valid responses
$\max \quad$ indicates the maximum number of marks

1 (a) speed \times time in any form, symbols, numbers or words OR any area under graph used or stated
13 (m / s) OR 24 (s) seen or used in correct context 312 m (2 or 3 sig. figs.)
(b) rate of change of speed OR gradient of graph OR 18/12
(c) same gradient / slope OR equal speed changes in equal times OR allow graph symmetrical

2 (a) $m g h$ OR $36 \times 10 \times 2.4$ 864 J OR Nm (2 or 3 sig. figs.)
(b) $(P=) E / t$ in any form, words, symbols or numbers OR 864 / 4.4 196 W OR J/s (2 or 3 sig. figs.)
(c) evidence that candidate understands the principle of energy conservation, expressed in words or as an equation (e.g. total energy is constant OR initial energy = final energy) or implied by statement accounting for difference
some energy is dissipated into the surroundings OR difference due to increase in internal energy/heating/thermal energy (of belt, motor, surroundings) owtte note: do not accept kinetic energy / sound / friction if no mention of heating
(d) increase in potential energy of mass is greater

OR work done/energy used (to raise mass) is greater
$t=E / P$ OR $P=E / t$ in any form, words or symbols AND power is constant
speed reduced / time taken is longer

3 (a) $p=m v$ in any form, words or symbols
$0.16 \mathrm{kgm} / \mathrm{s}$ OR Ns
(b) use of principle of conservation of momentum in words, symbols or numbers
use of combined mass $0.5(0)+0.3(0)$ OR $0.8(0)(\mathrm{kg})$
$0.2(0) \mathrm{m} / \mathrm{s}$

4 (a) three valid features listed without explanation
any three features explained from:
copper/metal is a good conductor (of heat)
NOT of electricity
black is good absorber/bad reflector
ignore emitter
insulating material will reduce heat lost/conducted away (from pipes/sheet)
NOT prevents heat loss owtte
glass/trapping of air reduces/prevents convection/warm air being blown away
glass produces greenhouse effect/reference to far and near I.R.
(b) 38 - 16 OR 22
$m c \theta$ OR $250 \times 4200 \times$ candidate's temperature difference
$2.31 \times 10^{7}(\mathrm{~J})$ e.c.f. from previous line
$9.24 \times 10^{7} \mathrm{~J}$ OR e.c.f. from previous line $\times 4$ correctly evaluated
no unit penalty if J seen anywhere in (b) clearly applied to an energy
(c) valid explanation relating to at least one of the reasons below:
note: if no explanation, this mark is not awarded even if more than three reasons are given
any three reasons from:
which direction roof faces
estimate output of panels
household needs / whether household will use all hot water
cost of panel / installation
time to recoup cost
whether roof is shaded
relevant environmental consideration (e.g. not using wood or other fuel to heat water) [max 3]
(d) nuclei join together, accept hydrogen for nuclei
to produce a different element / helium (and energy)

5 (a) (i) any one from:
(molecules) move randomly / in random directions
(molecules) have high speeds
(molecules) collide with each other / with walls
(ii) collisions with walls/rebounding causes change in momentum (of molecules)
force is rate of change of momentum / force needed to change momentum
(b) (i) $p_{1} V_{1}=p_{2} V_{2}$ OR $300 \times 100(\times 0.12)=p_{2} \times 0.40(\times 0.12)$

750 kPa
(ii) (molecules) collide with walls more often owtte OR more collisions with walls per second or per unit time owtte greater force per unit area

6 (a) clear attempt at semi circles, at least 3
same wavelength as incoming wavefronts, by eye
(b) speed \div wavelength or $20 \div 2.5$ or $v=f \lambda$

8 Hz or $8 \mathrm{~s}^{-1}$ or 8 waves/second
(c) candidate's (b) OR "the same" OR nothing
(d) low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength
low frequency signals / long wavelength signals diffract more OR
low frequency / short wavelength signals diffract less

7 (a) rheostat/variable resistor AND
control/vary/change/ limit the current/resistance/power/ voltage across heater
(b) ($I=$) P/V any form, words or numbers
($I=$) 1.25 (A) seen anywhere
$(V=) 6.0-3.6$ OR 2.4 seen anywhere
($R=$) V/I in any form words or numbers
1.92Ω (2 or 3 sig. figs.)
note: credit will also be given for alternative approaches
(c) battery running down/going flat/energy of battery used up OR V or e.m.f. less OR more/increasing resistance (of heater) NOT resistance of X increases
use of relationship between I and V or R OR the current decreases

8 (a) output of A: 1, 1, 0,0 c.a.o.
output of $B: 0,1,0,0$ e.c.f. from candidate's output of A
(b) dark AND hot owtte
note: must be consistent with answer to (a)
(c) B cannot provide enough power / current for lamp, or equivalent

OR allows remote lamp
note: statement of function of a relay without reference to context gains 1 mark

9 (a) electrons / negative charges move towards the rod / to R (ignore just "attracted") ignore any mention of positive charges moving any mention of positive electrons $=0$
(b) negative charges (are) close(r) (to the rod)
attraction between opposite charges greater than repulsion between like charges
(c) coulomb
10γ rays
(γ rays) detected at B
(γ rays) not deflected by field / not charged
charged particles / β particles (accept α for charged particles)
β particles detected at C
reference to direction of deflection / LH rule
no α-particles OR only background detected at A

11 (a) top bent down to R of layer
middle straight on
bottom deflected back to left
(b) (i) deflection greater than $90^{\circ} /$ the bottom one
(ii) positive ignore numbers
(iii) nothing/vacuum/space/electrons
(c) 2 AND 2

