MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/02
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2008	9702	02

1 (a) allow anything in range $20 \mathrm{~Hz} \rightarrow 20 \mathrm{kHz}$
(b) allow anything in range $10 \mathrm{~nm} \rightarrow 400 \mathrm{~nm}$
(c) allow anything in range $10 \mathrm{~g} \rightarrow 100 \mathrm{~g}$
(d) allow anything in range $0.1 \mathrm{~kg} \mathrm{~m}^{-3} \rightarrow 10 \mathrm{~kg} \mathrm{~m}^{-3}$

B1

2 (a) (i) k is the reciprocal of the gradient of the graph C1
$k=\left\{32 /\left(4 \times 10^{-2}\right)=\right\} 800 \mathrm{~N} \mathrm{~m}^{-1}$
A1
(ii) either energy $=$ average force \times extension or $1 / 2 k x^{2}$
or area under graph line
energy $=1 / 2 \times 800 \times\left(3.5 \times 10^{-2}\right)^{2}$ or $1 / 2 \times 28 \times 3.5 \times 10^{-2}$
M1
energy $=0.49 \mathrm{~J}$ A0
(b) (i) momentum before cutting thread $=$ momentum after

C1
$0=2400 \times V-800 \times v$ M1
$v / V=3.0$ A0
(ii) energy stored in spring $=$ kinetic energy of trolleys

C1
$0.49=1 / 2 \times 2.4 \times\left(\frac{1}{3} v\right)^{2}+1 / 2 \times 0.8 \times v^{2}$ C1
$\mathrm{v}=0.96 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(if only one trolley considered, or masses combined, allow max 1 mark)

3 (a) (i) $v^{2}=2 a s$
$1.2^{2}=2 \times a \times 1.9$
M1
$a=0.38 \mathrm{~m} \mathrm{~s}^{-2}$
A1
(ii) $F=m a$

$$
\begin{aligned}
& =42 \times 0.38 \\
& =16 \mathrm{~N}
\end{aligned}
$$

M1
A0

$$
\text { (b) } \begin{aligned}
\text { power } & =F V \\
& =16 \times 1.2 \\
& =19 \mathrm{~W}
\end{aligned}
$$C1

(c) (i) component $=42 \times 9.8 \times \sin 2.8$

$$
=20.1 \mathrm{~N}
$$

(ii) accelerating force $=20.1-16=4.1 \mathrm{~N} \quad \mathrm{C} 1$
acceleration of trolley $=4.1 / 42=0.098 \mathrm{~m} \mathrm{~s}^{-2}$
C1
$s=1 / 2 a t^{2}$
$3.5=1 / 2 \times 0.098 \times t^{2}$
C1
$t=8.5 \mathrm{~s}$

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2008	9702	02

(d) either allows plenty of time to stop runaway trolley
or speed of trolley increases gradually
or trolley will travel faster
B1 [1]
(answer must be unambiguous when read in conjunction with question)

4 (a) (i) 1. stress $=$ force / (cross-sectional) area
2. strain $=$ extension / original length

B1
3. Young modulus $=$ stress $/$ strain
(ratios must be clear in each answer)
(ii) either fluids cannot be deformed in one direction / cannot be stretched or fluids can only have volume change or no fixed shape
(b) either unless Δp is very large or 2.2×10^{9} is a large number
(c) $\Delta p=h \rho g$
$1.01 \times 10^{5}=h \times 1.08 \times 10^{3} \times 9.81$
C1
$h=9.53 \mathrm{~m}$
C1
$\Delta h / h=0.47 / 10$ or $0.47 / 9.53$
error $=4.7 \%$ or 4.9% or 5%
A1

5 (a) (i) frequency: number of oscillations per unit time M1
of the source / of a point on the wave
A1
(ii) speed: speed at which energy is transferred / speed of wavefront
(b) (i) does not transfer energy (along the wave)
(ii) position (along wave) where amplitude of vibration is a maximum

B1
(iii) all three positions marked

B1
(c) wavelength $=2 \times 17.8=35.6 \mathrm{~cm}$

C1
$v=f \lambda$
C1
$v=125 \times 0.356$
$=44.5 \mathrm{~m} \mathrm{~s}^{-1}$
C1
$44.5^{2}=4.00 / \mathrm{m}$
C1
$m=2.0 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1}$ A1

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2008	9702	02

$6 \begin{array}{ll}\text { (a) either } P=V I \text { and } V=I R \text { or } P=V^{2} / R & \text { C1 } \\ \text { resistance }=38.4 \Omega & \text { A1 }\end{array}$
(b) zero B1
1.5 kW

B1
3.0 kW

B1
0.75 kW

B1
2.25 kW

7 (a) α-particle: either helium nucleus or contains 2 protons +2 neutrons

$$
\text { or }{ }_{2}^{4} \mathrm{He}
$$B1

β-particle: either electron or ${ }_{-1}^{0} \mathrm{e} \quad \mathrm{B} 1$
α speed $<\beta$ speed
α discrete values of speed/energy, β continuous spectrum
either α ionising power >> β ionising power
or $\quad \alpha$ range $\ll \beta$ range
α positive, β negative (only if first two B marks not scored)
α mass > β mass (only if first two B marks not scored)
(any two sensible pairs of statements relevant to differences,

- do not allow statements relevant to only α or $\beta, 1$ each, max 2)
(b) (i) ${ }_{92}^{236} \mathrm{U} \rightarrow{ }_{90}^{232} \mathrm{Th} \quad \mathrm{M} 1$

$$
+{ }_{2}^{4} \mathrm{He}
$$

A1
(ii) 1. correct position for U at $Z=92, N=145$

B1
2. correct position for Np relative to U i.e. $Z+1$ and $N-1$

B1

