UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012		71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012		71

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – May/June 2012		9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper

	z = 2.326	B1	seen
	$494 \pm z \times \frac{23}{\sqrt{150}}$	M1	Any z
	= 490 to 498 (3 sfs)	A1	
	$(0.75 \times 54.8 + 0.25 \times 82.4 =) 61.7$	B1	
	$0.75^2 \times 16.0^2 + 0.25^2 \times 4.8^2$	M1	No need for $\sqrt{\text{ for M1}}$
	sd = 12.1 (3 sfs)	A1	
		[3]	
	H_0 : $p = 0.15$ H_1 : $p > 0.15$	B1	or H_0 : Approval rate same for new as for old H_1 : Approval rate for new > for old
	$(N(300 \times 0.15, 300 \times 0.15 \times 0.85))$		$(N(0.15, \frac{0.15 \times 0.85}{300}))$
	=N(45,38.25)	B1	= N(0.15, 0.000425)
	$\frac{59.5 - '45'}{\sqrt{38.25'}} \ (= 2.345)$	M1	or $\frac{\frac{59}{300} + \frac{0.5}{300} - 0.15'}{\sqrt{0.000425'}}$ (= 2.345)
	Allow wrong or no cc $z = 1.96$ 2.345>1.96	M1	Allow wrong or no cc comparison (or area comparison)
	Evidence prop is higher for new plan	A1	cwo
		[5]	
(i)	$\int_0^1 \frac{k}{(x+1)^2} \mathrm{d}x = 1$	M1	Any attempt integ $f(x) &= 1$. Ignore limits
	$-k\left(\frac{1}{2}-1\right)=1$	Λ1	oe, with limits inserted correctly
	(k = 2 AG)	[2]	
(ii)	$\int_0^a \frac{2}{(x+1)^2} \mathrm{d}x = \frac{1}{5}$	M1	Attempt integ $f(x) \& = \frac{1}{5}$ (oe), ignore limits
	$-\left[\frac{2}{(x+1)}\right]_0^a = \frac{1}{5}$		
	$-\left(\frac{2}{2}-2\right)=\frac{1}{5}$	A1	oe, with correct limits inserted correctly
		A1	
(iii)	Area below $x = 0.5$ is greater than 0.5 $m < 0.5$	B1 B1dep [2]	oe, eg More area at left hand end
	 (ii)	$494 \pm z \times \frac{23}{\sqrt{150}}$ $= 490 \text{ to } 498 \text{ (3 sfs)}$ $(0.75 \times 54.8 + 0.25 \times 82.4 =) 61.7$ $0.75^{2} \times 16.0^{2} + 0.25^{2} \times 4.8^{2}$ $(= 145.44)$ $sd = 12.1 \text{ (3 sfs)}$ $H_{0}: p = 0.15$ $H_{1}: p > 0.15$ $(N(300 \times 0.15, 300 \times 0.15 \times 0.85))$ $= N(45, 38.25)$ $\frac{59.5 - '45'}{\sqrt{'38.25'}} (= 2.345)$ Allow wrong or no cc $z = 1.96 2.345 > 1.96$ Evidence prop is higher for new plan $\int_{0}^{1} \frac{k}{(x+1)^{2}} dx = 1$ $-\left[\frac{k}{(x+1)}\right]_{0}^{1} = 1$ $-k\left(\frac{1}{2}-1\right) = 1$ $(k = 2 \text{ AG})$ $ii) \qquad \int_{0}^{a} \frac{2}{(x+1)^{2}} dx = \frac{1}{5}$ $-\left(\frac{2}{(x+1)}\right]_{0}^{a} = \frac{1}{5}$ $-\left(\frac{2}{(x+1)} - 2\right) = \frac{1}{5}$ $a = \frac{1}{9}$ $iii) \qquad \text{Area below } x = 0.5 \text{ is greater than } 0.5$	$\begin{array}{c} 494 \pm z \times \frac{23}{\sqrt{150}} \\ = 490 \text{ to } 498 \text{ (3 sfs)} \end{array} \qquad \begin{array}{c} \text{M1} \\ \text{A1} \\ = 490 \text{ to } 498 \text{ (3 sfs)} \end{array} \qquad \begin{bmatrix} 3 \end{bmatrix} \\ (0.75 \times 54.8 + 0.25 \times 82.4 =) 61.7 \\ 0.75^2 \times 16.0^2 + 0.25^2 \times 4.8^2 \\ (= 145.44) \\ \text{sd} = 12.1 \text{ (3 sfs)} \end{array} \qquad \begin{array}{c} \text{M1} \\ \text{A1} \\ \text{Sd} = 12.1 \text{ (3 sfs)} \end{array} \qquad \begin{bmatrix} 3 \end{bmatrix} \\ \text{H}_0: \ p = 0.15 \\ \text{H}_1: \ p > 0.15 \\ \text{H}_2: \ p > 0.15 \\ \text{M1} \end{array} \qquad \begin{bmatrix} 3 \end{bmatrix} \\ \text{(N(300 \times 0.15, 300 \times 0.15 \times 0.85)}) \\ = \text{N(45, 38.25)} \qquad \text{B1} \\ \frac{59.5 - 45'}{\sqrt{38.25'}} \text{ (= 2.345)} \\ \text{Allow wrong or no cc} \\ \text{z} = 1.96 2.345 \times 1.96 \\ \text{Evidence prop is higher for new plan} \end{array} \qquad \begin{array}{c} \text{M1} \\ \text{A1} \\ \text{[5]} \end{array} \qquad \begin{bmatrix} 5 \end{bmatrix} \\ \text{(i)} \qquad \int_0^1 \frac{k}{(x+1)^2} dx = 1 \\ -k \left(\frac{1}{2} - 1 \right) = 1 \\ (k = 2 \text{ AG)} \end{aligned} \qquad \begin{bmatrix} 2 \end{bmatrix} \\ \text{M1} \\ - \left[\frac{2}{(x+1)} \right]_0^a = \frac{1}{5} \\ - \left(\frac{2}{(x+1)} \right)_0^a = \frac{1}{5} \\ - \left(\frac{2}{(x+1)} \right)_0^a = \frac{1}{5} \\ - \left(\frac{2}{(x+1)} - 2 \right) = \frac{1}{5} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A3} \end{array} \qquad \begin{bmatrix} 3 \end{bmatrix}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – May/June 2012		9709	71

5	(i)	(a)	$P(X \ge 3) = 1 - e^{-3.2} \left(1 + 3.2 + \frac{3.2^2}{2!} \right)$	M1	Allow one	end error
			= 0.62(0) (3 sf)	A1 [2]		
		(b)	$P(X=3) = e^{-3.2} \left(\frac{3.2^3}{3}\right) (=0.22262)$	M1	May be imp	plied
			$\frac{\left(P(X=3\cap X\geq 3)\right)}{P(X\geq 3)} = \frac{P(X=3)}{P(X\geq 3)}$ $= \frac{'0.22262'}{'0.62010'}$ $= 0.359 (3 sf)$	M1 A1 [3]	$\frac{\text{Their } P(X)}{\text{Their } P(X)}$	
	(ii)	(a)	(Approx) normal with mean 3.2	B1		
			variance = $\frac{3.2}{120}$ or $\frac{2}{75}$ or 0.0267 (3 sfs) oe	B1 [2]	or sd = $\sqrt{\frac{3}{12}}$	$\frac{2}{20}$ or 0.163 (3 sfs) oe
		(b)	$\frac{3.3-3.2}{\sqrt{\frac{3.2}{120}}} (=0.612)$	M1	Allow with	cc attempted
			Φ ("0.612") = 0.730 (3 sfs)	M1 A1 [3]	Accept 0.73	3
6	(i)		$\overline{x} = 1.96$ $(\Sigma x^2 f = 254)$ $S^2 = \frac{50}{49} x \left(\frac{254}{50} - 1.96^2 \right)$ $= \frac{1548}{1225} \text{ or } 1.2637$	B1 M1 A1 [3]	Correct sub in S^2 formula	
	(ii)		H ₀ : Pop mean = 1.66 H ₁ : Pop mean \neq 1.66 $\frac{1.96-1.66}{\sqrt{\frac{1.2637}{50}}}$ = 1.887 z = 1.96 1.887<1.96 No evidence that mean has changed	B1 M1 A1 M1 A1 _{ft} [5]	In context	H_0 : Pop mean = 1.66 H_1 : Pop mean > 1.66 B0 $\frac{1.96-1.66}{\sqrt{\frac{1.2637}{50}}}$ M1 = 1.887 A1 z=1.645 M1 Evidence mean has changed A1 _{ft}
	(iii)		No because H ₀ not rejected	B1f [1]	If H ₀ reject	ed in (ii): Yes because H ₀ rejected
	(iv)		State mean not changed when it has $-1.96 < \text{test stat} < 1.96$	B1 B1 [2]	In context	State mean not increased when it has B1 test stat < 1.645 B1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – May/June 2012		9709	71

7	(i)	$\lambda = 5$ $1 - e^{-5} \left(1 + 5 + \frac{5^2}{2!} \right)$ $= 0.875$	B1 M1 A1 [3]	Any λ . Allow one end error
	(ii)	$X \sim N(120, 120)$ $\frac{109.5-120}{\sqrt{120}}$ (= -0.9585) $1 - \Phi(\text{``0.9585''})$ (= 1 - 0.8312) ``0.1688''^2 = 0.0285 to 0.0286	B1 M1 M1 A1 [4]	May be implied Allow with wrong or no cc or no √
}	(iii)	$\lambda = 15 \times \frac{5}{60} + 0.5$ = 1.75 $e^{-1.75} \left(\frac{1.75^3}{3!} + \frac{1.75^4}{4!} + \frac{1.75^5}{5!} \right)$ = 0.247 (3 sfs)	M1 A1 M1 A1 [4]	Any λ . Allow one end error