mun. Arenepabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2011	0620	32
1	(a) 27p 3 27p 3	32n 27e 32n 25e		[1] [1]
		ame proton number / same number of protons / same ifferent nucleon number / different number of neutrons		[1] number [1]
	a	ame electron <u>distribution</u> Ilow: same proton number and same number of electrons: ot: same number of electrons / same number of shells		[1]
	е	ndustrial detection of leaks / thickness of paper etc. / n lectricity / nuclear weapons / radiographs of welds / m ot: carbon dating		
	s	nedical treatment of cancer, radiotherapy, treatment of tudies in body, sterilising equipment, locating tumours ccept: X-rays only once		ays, tracer
2	` '	to form sulfur dioxide ain / any problem associated with acid rain / sulfur dio	xide is poisonous	[1] [1]
	b	igger surface area urns / reacts faster / greater number of collisions ot: more sulfur dioxide		[1] [1]
		ills microbes / bacteria / fungi etc. ccept: anti-oxidant / stops oxygen oxidising juice / pro	events growth of b	[1] acteria
		leach / refrigerant / making wine / fumigant /insecticide ot: making sulfuric acid	e / dyes	[1]
	tempe press	+ O ₂ → 2SO ₃ erature 400 to 450°C ure 1 to 10 atmospheres vstvanadium(V) oxide / vanadium oxide		[1] [1] [1] [1]
		+ $H_2SO_4 \rightarrow H_2S_2O_7$ O_7 + $H_2O \rightarrow 2H_2SO_4$		[1] [1]

Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	32
3	(a) (i)		: / roast in air / oxygen ept: burn in air / oxygen		[1]
	(ii)	(red	uce) with carbon / carbon monoxide		[1]
	ac	cept:	th both hydrochloric acid and sodium hydroxide(aq) any named strong acid and any strong alkali cid and alkali given then max = 3		[1]
		-	ide reacts with acid		[1]
	acidic oxide reacts with alkali/base amphoteric reacts with both		[1]		
		•	for react – form salt and water		[1]
	(c) (i)		quilibrium		[1]
		cons	of forward reaction equals rate of back reaction / co stant / macroscopic properties do not change with tine ept: amounts do not change with time		ain [1]
	(ii)	hydr	librium moves to left (SbOC <i>l</i> used up) rochloric acid removed by reacting with SbOC <i>l</i> sipitate dissolves in hydrochloric acid		[1]
	(iii)	add	water / dilute / add an alkali / add more SbC $\it l_3$ / add	a base / add a ca	rbonate [1]
4	(a) (i)		3 ect charges		[1] [1]
			and 1x around fluorine		[1]
	(ii)		ng <u>forces / bonds</u> between <u>ions</u>	f onormy	[1]
		to br	ept: lattice as alternative to bonds / requires a lot of reak <u>bond</u> between <u>ions</u> giant molecular / IMFs	renergy	
	(b) (i)		surrounded by 4O		[1]
			surrounded by 2Si s or stated to be tetrahedral		[1] [1]
					[1]
	(ii)		$on(\mathrm{IV})$ oxide does not conduct and (molten) scandius conduct	ım fluoride	[1]
			good and poor		1,1
	(iii)	scar	ndium fluoride contains <u>ions</u> (silicon(IV) oxide does	not)	[1]
		ions	can move when molten or in solution		[1]

ı agc ı	Mark Genetic: Teachers Version	Cynabas	i apci	
	IGCSE – October/November 2011	0620	32	
88	·			
(same same conse	ro from:) general (molecular) formula functional group cutive members differ by –CH ₂ on methods of preparation			
2bp ar	t structure and 4bp around carbon nd 2nbp around oxygen n hydrogens		[1] [1] [1]	
. , . ,	orrect structural formula for propanoic acid low: OH but all other bonds to be shown		[1]	
ba ac	r / oxygen acteria / microbes / micro-organisms ccept: mother of vinegar ot: yeast		[1] [1]	
(e) propyl allow:	ethanoate $CH_3COOC_3H_7$ not : $C_5H_{10}O_2$		[1] [1]	

Syllabus

Paper

Mark Scheme: Teachers' version

Page 4

5

			IGCSE – October/November 2011	0620	32
6	(a)	(i)	to neutralise all the acid / so all acid reacts not: reaction goes to completion		[1]
	((ii)	remove excess carbonate / removes unreacted carbonate: remove solid	[1]	
	(i	iii)	t crystals	[1]	
	(i	iv)	filter / decant / wash crystals dry with filter paper or tissues etc. accept: in warm oven / warm place / in sun not: just heat		[1] [1]
	(b)	(i)	potassium carbonate is soluble / both salts soluble		[1]
	((ii)	use potassium carbonate solution accept: implication of solution – in pipette / burette / 2 titrate / titration term required use an indicator accept: any named acid/base indicate repeat without indicator / use carbon to remove indicate.	or	[1] [1] [1] [1]
	1 1 1	mas the the the the the x =	ss of hydrated magnesium sulfate = $1.476g$ ss of barium sulfate formed = $1.398g$ mass of one mole of $BaSO_4$ = $233g$ number of moles of $BaSO_4$ formed = 0.006 number of moles of $MgSO_4.xH_2O$ used in experiment = mass of one mole of $MgSO_4.xH_2O$ = $1.476/0.006$ = 246 mass of xH_2O in one mole of $MgSO_4.xH_2O$ = $246 - 126/18 = 7$ given without method = max 1	3g	[1] [1] [1] [1]

note: apply ecf but x must be an integer and less than 10

Mark Scheme: Teachers' version

Syllabus

Paper

Page 5

_	IGCSE – October/November 2011	0620	32
	tion is the distillate collected ween 40–100°C / in the stated range		[1] [1]
(b) (i)	$C_8H_{18} + 25/2O_2 \rightarrow 8CO_2 + 9H_2O$ accept: double the above / 12.5 in front of oxyge	n	[2]
(ii)	poisonous / toxic / damages health / brain / kidne note: must relate to people not: just harmful	ys	[1]
(iii)	dibromo 2 bromine atoms (per molecule) not: Br ₂ accept: 2 bromide groups eth 2 carbon atoms (per molecule) ane a C-C single bond / no C=C / group C _n H _{2n+1} / ignore: any reference to alkanes all three correct [2] two correct only [1]	[/] saturated	[2]
(iv)	position of bromine atom(s)		[1]
(c) 0.10 n =	04/0.026 4		[1] [1]
oxic (oxi acc 2NC	des of nitrogen) change carbon monoxide into car des of nitrogen then become nitrogen des of nitrogen) change hydrocarbons into carbon ept: balanced equations for first two marks D + 2CO → N₂ + 2CO₂ and 2NO → N₂ + O₂ gen changes hydrocarbons into carbon dioxide an	dioxide and water	[1] [1] [1] [2] [1]

Syllabus

Paper

Mark Scheme: Teachers' version

Page 6

7